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1. Introduction 

Population growth, heavy traffics, safety 
requirements and increasing transportation 
expenses cause almost all countries to pay more 
attention in developing their railway 
transportation systems. Reducing energy 
consumption and simultaneously maximizing 
service quality can be considered as two 
significant issues in railway engineering. 
Originally, in order to minimize the total energy 
consumption, railway industries came across 
two independent procedures: a) improving 
fabrication technology and b) developing the 
control methods. Obviously, executing any 
improvement in fabrication process of current 
railway systems is accompanied with many 
commercial expenses [1]. However improving 
the controlling procedures such as applying 
efficient driving strategy and looking for an 
optimal timetable for the current system can be 
easily achieved and does not impose significant 

expenses [2]. In this way, performing optimal 
speed trajectories on a train system can 
effectively reduce the energy consumption with 
minimum cost rather than making changes into 
the infrastructure. Optimal speed trajectories can 
be utilized by driver assistant system (DAS) and 
automatic train operation (ATO) system to 
modify their journey strategies [3]. Many studies 
concerning energy minimization approaches are 
accomplished in railway applications. Yang et 
al. [4] studied a mathematical model with a 
predefined path and then used a coasting control 
strategy with genetic algorithm (GA) method to 
find optimal trajectories of a train. In order to 
investigate advanced power management 
strategies for Diesel multiple unit trains, Lu et al. 
[5] evaluated the potential of energy saving 
through independent operation of motors using 
dynamic programming (DP) method. Based on 
the control strategies, the accomplished studies 
in this context can be categorized into two major 
groups including coasting control and global 
control. In order to search for the specific points 
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where optimal speed trajectory is assured, 
coasting control methods are applicable [6-8]. 
Applying global control approaches can be 
accompanied with many difficulties and cause a 
heavy calculation burden because all available 
signals need to be used to produce an optimal 
speed trajectory [9-10]. Lu et al. [11] used DP, 
ant colony optimization (ACO) and GA methods 
to create optimal speed trajectories with 
minimum energy consumption while observing 
journey time and speed constraints. They 
demonstrated that DP is capable of producing 
speed trajectories with better performance but 
with heavier calculation burden and under some 
limited quantized inputs. Because of the conflict 
between energy consumption and journey time 
delay, using traditional methods for optimizing 
these objectives simultaneously are difficult or 
even impossible. Therefore, using evolutionary 
methods in these problems can potentially lead 
to acceptable results [12, 13].  

In the present research, the train is considered 
as a plant with a sequence of several modes 
including motoring, cruising, braking and 
coasting. A suitable strategy is developed to 
implement an efficient driving with allocating a 
dynamic control index which satisfies traveler 
comfort. The rail path between two stations is 
divided into n predefined zones and a graph with 
k×n nodes is considered. The modified versions 
of two multi-objective evolutionary strategies 
including NSGA-II and MOPSO are applied to 
the problem. The final solutions are evaluated by 
using the Pareto fronts optimization method and 
are compared based on several criteria including 
the energy minimization, performance and 
robustness. The initial work on this topic is 
reported in [14]. 

 

2. Vehicle Modelling 

The use of computer simulations in railway 
engineering goes back to the time when 
computer techniques started flourishing (i.e. 
1970s) [15]. Modelling of rail vehicles’ 
movements were accomplished to compute the 
distance, time and velocity status of a moving 
train on a track under speed limits and traction 
devices’ constraints. Based on the Newton’s 
second law of motion, the motion of a vehicle 
can be expressed as in Equation (1): 

2

2
sin( )Teff

d x
M f R Mg

dt
                         (1) 

where fT is the traction force (N.m), Meff is the 
effective mass (kg), R is the train resistance to 
move forward (N), g is the gravitational force 
(N), α is the angle of track slop and x is the 
current train distance (m). 

In addition to the stationary components, 
every vehicle possesses some rotatory features 
that affect the effective mass. Hence, a rotary 
allowance coefficient is required to increase the 
accuracy of calculations [16]. 

(1 )effM M                                                     (2) 

where  is the rotary allowance and usually is 
assumed to be less than 0.2 [16]. 

In general, the vehicle control inputs are 
divided into four modes: motoring, coasting, 
cruising and braking. During motoring mode, 
which includes full motoring and partial 
motoring, the train is accelerated and its velocity 
is raised from the low speed level to the higher 
amounts. During the cruising mode, velocity is 
held at a constant level. When train operates in 
coasting mode, traction motors do not produce 
any torque, thus the total energy consumed by 
the traction motors is zero. In practice, the 
acceleration is influenced by the total resistance 
and gravitational effects. In this situation, 
determining the coasting point where, the train 
enters the coasting mode at that point has an 
indisputable effect on the total energy 
consumption [17]. During the braking mode 
including full and partial braking, the train speed 
is decreased to reach to a lower speed limit or to 
stop at the station. Some critical requirements for 
braking mode exists which consists of assuring 
that the train speed always remains under certain 
level and also the train arrives at the station with 
a zero level of speed. Several methods are 
introduced to determine the exact point of 
entering to the braking mode. In some studies, a 
train is assumed to be located at the destination 
point and then it moves inversely by an 
analogous traction force to create a speed 
trajectory. After that, the resulted trajectory is 
intersected to the normal train speed trajectory. 
Obviously, the intersection point will be the 
exact braking point [18]. Frankly, this method is 
efficient when the train goes into the braking 
mode by a constant braking ratio and it does not 
stand with a varying one. In the present research, 
a method is proposed which applies a virtual 
braking process in each moment, once the train 
enters to a predefined braking area. The 
proposed method determines the exact braking 
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point meanwhile it actually meets the efficiency 
for various braking ratios. 

2.1. State Equations and Objective Functions 

The state of a train can be expressed as in 
Equation (3): 

1
( ( ( ), ( )) ( ) ( , ))

eff

v
x

f u t v t r v G x v
Mv





  
        
     

                         (3) 

where x, v, and u represent position, velocity and 
input signal of the train, respectively. r implies 
the resistance against the train movement which 
is presented in Equation (4). f is expressed in 
Equation (5) and is the force that is applied to the 
train wheels. G is the longitudinal force imposed 
by tunnels, slopes and curvatures of the track to 
the train of length L. 

2( )r v A B v C v                                            (4) 

A, B and C are the empirical factors that are 
related to the Davis train resistance coefficients 
[19]. 

( ( ), ( )) ( ) ( )accf u t v t u t TE t                              (5) 

TEacc(t) is the maximum accessible traction 
effort that can be expressed as in Equation (6): 

( )
( )

acc nP
TE t

v t

 
                                                  (6) 

where µ and Pn are friction factor and nominal 
power of traction motors in the train. The 
longitudinal force per mass unit can be expressed 
as in Equation (7): 

( , ) sin( ( )) ( ( )) ( ( ), )t tCG x v mg x f R x f L x v                (7) 

where a(x), R(x) and Lt(x) are the slope, the 
radius of the track curve, and the length of the 
tunnel along the track, respectively. fc(·) and ft(·) 
are the curvature and tunnel resistances, both are 
given by the experimental equations. The 
curvature resistance can be obtained by using the 
Roeckle experimental Equation (8) [20]: 

6.3
( ( )) ( ) 300

( ) 55

4.91
( ( )) ( ) 300

( ) 30

C

C

f R x m for R x m
R x

f R x m for R x m
R x


  


   

               (8)  

Undoubtedly, trains confront aerodynamic 
resistance when entering the tunnels. This 
resistance is related to several factors such as the 
tunnel shape, the smoothness of tunnel walls, 
and the exterior surface of the train [20]. The 
tunnel resistance is defined as follows: 

2( ( , ) ( ( ))t t t tf L x v a L x v                                   (9) 

The multi-objective problem of simultaneous 
optimization of the train energy consumption 
and travelling time can be written as a set Ф, 
including two objective functions. 

1( ,..., ) , 2n n                                       (10) 

The first objective function, φ1 is related to 
energy minimization and the second one φ2 

explores the minimum travelling time. 

1 minE                                                          (11) 

2 minT                                                            (12) 

The energy consumed by the train can be 
calculated as in the following Equation (13): 

0 0

0

( ) ( ( ), ( )) ( )

( ) ( ) ( )

f f

f

t t

t t

t
acc

t

E P t dt f u t v t v t dt

u t TE t v t dt

  

  

 


                 (13) 

The travel time of the train equals the sum of 
the total time durations that is needed to travel 
over a zone in a track with n zones. This 
statement is presented in Equation (14). 

1

n

k

k

T T


                                                           (14) 

Tk represents the time duration that train spends 
to pass through the kth zone. Constraints and 
boundary conditions on the problem are stated 
as: 

0 0 0( ) , ( ) 0x t x v t                               (15) 

( ) , ( ) 0f f fx t x v t                                  (16) 

1 1u                                                             (17) 

max ( )v v x                                                      (18) 

vmax is the maximum allowable speed of the train 
that is determined by the traffic control or ATP 
system. 

The state switching that is presented in 
Equation (19), is performed by making a change 
in the traction power. Either driver or ATO 
decides on this change. A desired state switching 
requires applying suitable strategies to determine 
the proper sequences of the control indexes 
between the two states. 
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Tf

0 0 0 0 1 1 1 1= {x ,v , t } ={x ,v , t }                    (19) 

2.2. Graph Construction 

In order to represent a certain track with n 
zones and k candidate speeds for each zone, a 
k×n nodes graph is developed. The graph is 
depicted in Figure 1. In each predefined zone, the 
target speed must be determined so that the train 
will be capable to follow this speed. These target 
speeds are defined in the optimization process. 

 
Figure 1. Graph construction 

2.3. Driving and Control Index Allocation 

In order to generate the speed profile, the 
track length is divided into n zones, and the 
speed variables including vei, vai and vxi are 
determined in each zone (Figure 2). For each 
zone, two sections are considered: the first 
section contains two speeds of vei and vai that are 
the entrance and candidate speeds, respectively. 
The second section contains vai and vxi that are 
the candidate and exit speeds, respectively.  vei 
and vxi are determined during the speed profile 
generation. vai is obtained by applying the 
optimization algorithms. If vmi is assumed as the 
maximum speed corresponding to the ith zone 
that is defined by ATP system and the track 
information, the following constraints exist for 
the ith zone: 

0 0 0( ) , ( ) 0x t x v t                                      (20) 

( ) , ( ) 0f f fx t x v t                                 (21) 

It should be noted that the driver is limited to 
select only three inputs (i.e. u ϵ {-1,0,1}) to reach 
the target speed in each zone. Motoring and 
braking ratios are determined automatically by 
the developing strategy that is named the control 
index kC at all instances. This is elaborated 
further on in the next section of this article. 

 

Figure 2. Details of zone i 

The ith zone speed trajectory is related to 
some factors including the decision speed vai, 
earth geometry profile, the maximum speed of 
the current and the next zones and the coasting 
control capabilities in total zones. The following 
approach is developed in this research to 
implement an efficient driving strategy. 

a) If 1,xi mi xi miv v v v   : 

 If ai eiv v Motoring 

 If ai eiv v Coasting 

 If ai eiv v Cruising 

b) If 1xi miv v  : 

 The first case: Coasting. The 
optimization algorithm evaluates 
circumstance and situation for switching to 
the coasting mode intelligently. 

 The second case: Braking. If the train 
cannot reach to the next speed limit by 
coasting mode, therefore, the train enters to 
the critical braking distance and it must 
determine the accurate braking point and its 
rate to reach favorably to the speed limit. 

c) If the train is in the critical distance of the 
destination cur criticalx x :  

 Throughout this section and regarding to 
the train's current state, virtual braking 
processes are performed over some 
predefined periods. During this procedure, 
the accurate braking point is assessed. 

2.4. Control Index with Traveler Comfort 
Factors 

In some studies that are conducted in the 
context of optimal train speed trajectory, almost 
no attention was paid to the traveler comfort 
criteria. When the train is accelerated or entered 
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to the braking mode, traveler comfort becomes 
more significant. Generally, in most railway 
transportation systems, driver plays a major role 
in making a desirable and comfortable journey. 
Therefore, an undesirable performance of the 
driver can distort the efficient journey. Here, the 
driver task is limited to only adjusting the mode 
type (i.e. u ϵ {-1,0,1}, where -1 is for braking, 0 
is for coasting and 1 is for motoring and 
cruising). Consequently, the operational control 
input is defined as in Equation (22): 

(t) (t). (t)Cu u k                                                   (22) 

where u(t) is selected by the driver and kC(t) is 
the control index and is determined in Equations 
(23-25): 

( )
mode {motoring} ( ) ai m cur

c
ai

v k v t
k t

v


              (23)

( )
mode {braking} ( ) 1 ai b cur

c
ai

v k v t
k t

v


          (24)

( ) ( , )
mode {Cruising} ( )

( )
c acc

r v G x v
k t

TE t


            (25) 

where vcur(t) is the current speed. km, kb ϵ [0,1] are 
considered as comfort measures in motoring and 
braking modes. According to Equation (23), 
while km is approaching to zero, the less comfort 
criteria is resulted, but the more exact tracking of 
the speed trajectory is obtained and when it goes 
to one, the more comfort will be resulted. Figure 
3 demonstrates the train acceleration in motoring 
mode for several km values. Undoubtedly, 
selecting a proper km can provide significant 
improvement in passenger comfort in the 
motoring mode. Another challenging issue with 
a great influence on passenger comfort is lack of 
a satisfactory braking process. However, in the 
literature, almost all studies consider exactly an 
inverse motoring traction force for braking 
process and the effects of a high rise negative 
acceleration on passenger comfort is neglected. 
By means of the developed kC(t), that is 
presented in Equation (24), the braking mode 
ratio in each instance is determined with the 
influencing factor kb. The resultant kC(t) can 
manage the braking mode and causes the train to 
stop at the station precisely with a smooth 
decreasing negative acceleration. Figure 4 
presents the acceleration curves for different kb. 
It is obvious that for kb= 0.1, the negative 
acceleration during braking mode has a lower 
extent, and therefore, it causes a better passenger 
comfort when compared with when kb= 1. 
According to the earlier expressed content, 

determining desirable values for kb and km during 
the journey is very significant, in a way that, not 
only the target speed to be tracked properly but 
also the traveler comfort is satisfied 
appropriately.  

 

3. Simulation and Results 

In this research, two evolutionary multi-
objective algorithms, namely NSGA-II and 
MOPSO are implemented in order to identify the 
optimal speed trajectories. Optimization is 
accomplished for two antithetic objectives 
namely the energy consumption and the time 
travelling minimization.  

 

Figure 3. Acceleration curves derived from various 
km in motoring mode condition 

 

Figure 4. Acceleration curves derived from various 
kb in braking mode condition 

As a case study, a voyager type train [13] 
with parameters that are presented in Table 1 is 
used. The track length is assumed to be 30 km 
with profile, speed limit, tunnels and curvatures 
that are depicted in Figures 5&6. 

3.1. NSGA-II Implementation 

Non-dominated sorting genetic algorithm 
(NSGA-II) is a multi-objective optimization 
method introduced by Deb et al. [21]. A 
particular property of this algorithm is the 
improved computational complexity in 
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comparison to its predecessors that is of the 
order of O(MN2 ), where M is the number of 
objectives and N is the size of the population. 

Table 1. Voyager train parameters 

146.8 The maximum TE (kN) 

1568 The maximum power (kW) 

213.19 Mass (tones) 

3.73 A 

0.0829 B 

0.0043 C 

 

 

Figure 5. The altitude profile and location of tunnels 
for the selected rail path 

 

Figure 6. Curvatures of the selected rail path 

Another measure in selecting this algorithm 
is the simplicity in implementation, and thus of 
its application and adaptation. This method is 
analogous to the ordinary genetic algorithm but 
with two additional functions: non-dominated 
sorting and crowding distance. The algorithm 
starts with an initial population and then with 
evaluating the fitness amounts, it goes to the 
non-dominated sorting step, Figure 7. During 
non-dominated sorting, every individual is 
ranked according to its domination rate and then 
it allocates to a group or a front of the space. 
Crowding distance is a control parameter that is 
calculated for each member of each front. This 
parameter indicates a degree of closeness of each 
individual to the other members in a group, as is 
presented in Equation (26). 

Vk,1 Vk,2 ... Vk,n

Graph 1

Vk,1 Vk,2 ... Vk,n

Graph P
...

Initial Population

Non-dominated Sorting

Graph 1

Graph P

Graph 2

Graph z

Crowding Distance

Graph 3

D1p

Dpz

D23

Vk,1 Vk,2 ... Vk,n

Graph i

Vk,1 Vk,2 ... Vk,n

Graph j

Cross-over

Vk,1 Vk,2 ... Vk,n

Graph j’(i , j)

Vk,1 Vk,2 ... Vk,n

Graph i

Vk,1 Vk,2 ... Vk,n

Graph i'

Mutation

Fitness Evaluation

Graph 1

Objective1 = ?

Objective2 = ?

Graph 2

Objective1 = ?

Objective2 = ?

...
Graph P

Objective1 = ?

Objective2 = ?

Selection

Graph 1 Graph P Graph z Graph 2 ...

Stop Criteria

Speed threshold checking

Speed threshold checking

Graph 1

Graph P

Graph z

Graph 2

Graph 3

Front 1

Front 2

Vk,1 Vk,2 ... Vk,n

Graph i'(i , j)

 Figure 7. NSGA-II flowchart 

 

max min
1

( 1) ( 1)
( )

p
i i

j
i i i

f k f k
D k

f f

  



                      (26) 

where k is the member number existing in the jth 
group and i represents the objective function for 
a problem with p objective functions. After that, 
an elitist selection procedure is performed to 
select the best individuals for entering to the 
cross-over and mutation pools. During cross-
over, every offspring is produced from 
combining two parents. For this purpose, the 
present research uses the simulated binary cross-
over (SBC) method, which is formulated as in 
Equations (27) to (29): 

1

1

1

1

(2 ) , 0.5

1
( ) ,
2(1 )

C

C

i i

qi

i

u u

otherwise
u












 


 





                     (27) 

(1, ) (2, )[1, 1] 0.5 (1 ) (1 )t tt
qi qii i ix x x      

 
      (28) 

(1, ) (2, )[2, 1] 0.5 (1 ) (1 )t tt
qi qii i ix x x      

 
     (29) 

where qi is derived from the probability 

distribution curve C with random (0,1)iu  . 

Then two offspring are created from Equations 
(28) and (29). For the mutation, according to 
Equation (30), a probability distribution curve 

m is used that generates i from a random input
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(0,1)ir  . Finally, a new offspring yi can be 

produced by using Equation (31). 

1

( 1)

1

( 1)

(2 ) 1 , 0.5

1 [2(1 )] , 0.5

m

m

i i

i

i i

r if r

r if r












  


 

  



           (30) 

(1, 1) ( )t b b w
i i i iiy x x x                                     (31) 

Following up the configuration that is 
presented in Figure 7 an additional block named 
the speed threshold checking near both genetic 
operators is used that works as following:  

By supposing a known current speed vi in the 
current zone zi, to determine a feasible speed area 
for the next zone, the train is moved to the next 
zone dynamically for two times, first with the 
maximum traction force and second with the 
minimum traction force. Thus, the accessible 
speed area of the next zone is determined as:  

maxmin1 1 1[ , ]acc acc acc
i i iv v v                                 (32) 

This process should be performed for all 
zones. Accordingly, for each genetic operator 
whether cross-over or mutation, if one variable 
of an offspring remained outside of the 
determined speed interval for each zone, this 
variable is rejected from the process and its value 
must be modified. It should be noted that, the 
optimization algorithm has infinite options to 
select the target speed from accessible speed area 
in each zone. By implementing this approach in 
the optimization algorithm construction, in 
addition to holding the continuity of the speed 
variables, the searching process will be guided 
appropriately. Although the computer processor 
takes more time to run the algorithm, the resulted 
solutions will be impressive. The above process 
is iterated alternatively to confirm the 
corresponding stop criteria. 

3.2. MOPSO Implementation 

Coello et al. [22] developed a multi-objective 
particle swarm optimization (MOPSO) 
algorithm for the first time. Selecting this 
algorithm somehow means reduced elitism when 
compared with NSGA-II. However, it reaches to 
solutions where the latter method is not capable 
off. The fundamental procedure of this algorithm 
is similar with the conventional PSO algorithm 
but with some additional features to generalize it 
to solve for multi-objective problems. A general 

rule always exists for all PSO-based algorithms 
that, each particle tries to achieve the best 
experience with using their personal information 
i.e. position and velocity. Thus, the particles 
select their best directions and make a movement 
hoping to catch better experiences. As other 
evolutionary strategies, the process starts with 
some initial particles, which here are the graph 
types. Then, an archive is created and absorbed 
all non-dominated solutions. Updating velocity 
and position of every particle are performed 
according to Equations (33) & (34). 

1
1 1 2 2( ) ( )

i

t t t t
i i best i best iV wV C r p X C r g X      (33) 

1 1t t t
i i iX X V                                             (34) 

where 1tVi
 and 1tX i

  are the velocity and position 

of the particle i in the new iteration. t
V i and t

X i  

are the current velocity and position of the ith 
particle. 

ibestp is the better position that is 

experienced by the ith particle. bestg is the best 

position that is experienced by the best particle. 

1 2, (0,1)r r   are random values and 1 2,C C are 

cognitive and social parameters respectively.  

It actually seems as a straightforward 
procedure but for single objective problems. 
Whenever, it comes to solve multi-objective 
problems, the algorithm seems to be complicated 
as is presented in Figure 8.  

 

Figure 8. MOPSO flowchart 
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Based on the configuration in Figure 8 and in 
order to keep on the diversity of the solutions 
throughout the Pareto front optimization, a table 
is used to simplify selecting the leader of every 
particle in a multi-dimension space. It is 
preferred that, the leaders be selected from the 
boxes with minimum particles to distribute new 
particles appropriately throughout the front. The 
following expression for the Boltzmann method 
is used for selecting the leader. 

exp( )i ip n                                               (35) 

where ip is the probability of selecting box in , 

 is the selecting effort and always 0  . 

Finally the amount of ip is concluded as in 

Equation (36): 

exp( )

exp( )

i
i

j

j

n
p

n









                                          (36) 

For the next step, the new particles with new 
positions and velocities are generated. Now the 
archive members should be updated. Dominated 
and additional particles will be removed from the 
archive at this step and they will be ready for 
next iteration. The speed threshold checking box 
is used as similar to NSGA-II for this algorithm. 
It means that, if a particle does not hold its 
variables among the determined intervals, that 
particle will be rejected from the process and its 
variables will be modified. This procedure is 
iterated alternatively until the stop criterion is 
verified and the best solutions are perfectly 
achieved. 

 

4. Pareto Front 

Figure 9 presents the results from the Pareto 
front optimization method corresponding to the 
NSGA-II for various members and iterations. It 
is obvious that, the distributed population on the 
Pareto front is in a convex form and also 
possesses a desirable diversity because of 
covering overall Pareto front. Solutions in the 
central area of the Pareto front conclude the best 
convergence in comparison to the other marginal 
solutions. The results that are obtained from 150 
members and 150 iterations are more favorable 
than the one with 100 iterations and 100 
members. In fact, the favorable diversity of the 
Pareto front results that are generated by the 
modified NSGA-II is the main reason in using 
this algorithm.  

 

Figure 9. Pareto front optimization output from 
NSGA-II method 

 

Figure 10. Pareto front optimization output from 
MOPSO method 

The two sets of the optimization results that 
are produced by using the Pareto front method 
(MOPSO) with different number of particles and 
iterations are presented in Figure 10. The results 
converge to a special front but with a poor 
diversity in comparison with NSGA-II. In order 
to compare the results that are generated by 
NSGA-II and MOPSO, all fronts are presented 
in a single plot in Figure 11. Obviously, in the 
marginal areas of Pareto front i.e. solutions with 
journey time shorter than 1100 seconds and 
longer than 1500 second, MOPSO can be more 
efficient. Moreover, in the central areas of Pareto 
front, NSGA-II has a favorable performance.  

It should be noted that, each member in the 
Pareto front represents a strategy including total 
information required to move a train from an 
origin to a final destination.  Thus, when a 
supervisor selects the final solution, the 
corresponding speed variables in the decision 
space will be distributed in the predefined zones 
and then the train moves to the target speeds with 
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an efficient driving strategy by applying suitable 
control sequences that were mentioned earlier. 

In the present research, robustness of the 
optimal solutions that are provided from 
optimization algorithms can be assessed by 
applying a known perturbation to the decision 
space variables and then calculating the 
variances in the objective space by using 
Equation (37). If the objective space variances 
were limited, it can be noted that, the 
corresponding solution would be robust due to 

an identical perturbation [23]. If ( )pf x  is the 

perturbed objective function and   is the 

maximum variance between the main objective 
function f(x) and the perturbed one then the 
robustness of solution can be expressed as in 
Equation (37): 

 

Figure 11. The Pareto fronts resulted from NSGA-II 
and MOPSO methods 

1 2( ) ( ( ), ( ),..., ( ))

( ) ( )

( )

N

p

Minimize f x f x f x f x and X S

f x f x
subject to

f x










 




          (37) 

4.1. Optimal Speed Trajectories 

In this section, in order to compare the speed 
trajectories that are resulted from the two 
optimization algorithms, a base journey time 
equal to 1200 seconds is considered. The optimal 
speed trajectories, distance-time and 
acceleration profiles due to the 1200 seconds 
journey time determined from NSGA-II, and 
MOPSO are presented in Figures 12 and 13. 
From these results it can be observed that the 
braking procedures are properly acted for either 
stopping at the station or reaching to the lower 
speed levels. The acceleration curves reveal that 
the passenger comfort is remarkably satisfied. 
The position profiles demonstrate the precise 

stop point of the train at the station. During the 
speed declining to the target lower speed level, 
the coasting mode is used as far as possible. 
However, if the train speed fails to reach its 
target during the critical distance, then the 
braking mode is used. 

 

Figure 12. Speed, position and acceleration profiles 
obtained from NSGA-II method 

 

Figure 13. Speed, position and acceleration profiles 
obtained from MOPSO method 

To stop at the station, the coasting mode is 
preferred before the train goes into the braking 
mode. Usually, in places on the track with higher 
resistances like the tunnels and curves, which an 
additional negative force is imposed on the train, 
the train has to consume more energy to hold its 
speed level. Under theses conditions, the optimal 
approach in terms of energy consumption would 
be using the coasting mode and then 
compensating the speed level at places of lower 
track resistances. The results in Figures 12&13 
demonstrate that the coasting strategy is 
completely identified when the train goes to a 
situation with high resistance. In this case the 
tunnel is in a distance of 7 to 10 km from the 
station number one. The existing smoothness in 
the speed trajectory can be regarded as an 
important factor to provide for the traveler 
comfort during the journey. Acceleration 
profiles also can prove the above claim. The 
limited variations in the acceleration profile 
concludes a favorable journey in respect of the 
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traveler comfort criteria. The energy 
consumption and robustness of three travels with 
journey time equal to 1040, 1200 and 1520 
seconds that are determined from NSGA-II and 
MOPSO methods are presented in Table 2. In a 
journey time of 1040 seconds the energy 
consumption prediction by MOPSO is lower 
than NSGA-II. However, for other cases the 
prediction for the energy consumption by the 
NSGA-II method is better. 

Two perturbations of 1% and 2% are used for 
robustness evaluations. It is observed that 
MOPSO solutions are more robust when 
compared with NSGA-II. The running time for 
the optimization is fairly long that is due to the 
complicated algorithm that is used. However, 
since the outcome is for achieving to an optimal 
ATO configuration and the desired train control 
system the long running time for the 
optimizations is not counted as a weakness in the 
procedures. 

 

5. Conclusions 

Applying analytical strategies to solve a 
multi-objective optimization problem can be 
sophisticated especially when the objectives are 
in conflict. Numerical methods such as 
evolutionary algorithms play a significant role in 
this area. In this article an optimization problem 
with two simultaneous and conflict objectives 
i.e. energy consumption and journey time delay 
were considered for a train to determine the 
optimal speed trajectories with efficient traveler 
comfort. To serve the purpose, two modified 
multi-objective optimization algorithms 
including NSGA-II and MOPSO were adopted. 
The results demonstrate that all predictions with 
the Pareto front optimizations converge to a 
unique front. It is proved that almost all feasible 

solutions are attained. For a journey at 1200 
seconds with near zero time delay, NSGA-II 
reveals a better performance when compared 
with MOPSO. On the other hand, the solutions 
that are resulted from NSGA-II prove lower 
robustness when a 2% perturbation from the 
decision space variables is used. For a journey 
time of shorter than 1100 seconds and longer 
than 1500 (i.e. solutions in marginal area of the 
Pareto front), MOPSO method proves a potential 
to generate better solutions. The resultant speed 
trajectories reveal that almost all the properties 
of an efficient journey are well identified.  
Through the use of the methods that are 
proposed in this research simultaneous 
improving in the energy consumption and 
service quality are achieved. When applied to the 
example railway transportation a minimized 
journey time delay and an increased traveler 
comfort are accomplished. These results can be 
effectively used for improving ATO and other 
driver assistant systems within the train 
configuration. 

 

References 

[1] R. Persson, E. Andersson, S. Stichel, A. 
Orvnäs, Bogies towards higher speed on existing 
tracks, International Journal Of Rail 
Transportation, Vol. 2, Issue 1, (2014). 

[2] M. Schneider, N. Nießen, Minimising 
economic losses due to inefficient rescheduling, 
Journal of Rail Transport Planning & 
Management, Vol. 6, No.2, (2016), pp. 128-140. 

[3] A. Fernandez-Rodriguez, A. Fernandez-
Cardador, AP. Cucala, Design of robust and 
energy-efficient ATO speed profiles of 
metropolitan lines considering train load 
variations and delays, IEEE Transaction of 

Table 2. Summary results for three journeys at: 1040, 1200 and 1520 Seconds 

Running Time 

(s) 
Robustness Consumed 

Energy (J) 
Journey Time 

(s) 
Method 

2%p   1%p   

24500 
94.19% 99.47% 4.756×108 1040 

NSGA-II 96.38% 99.07% 3.547×108 1200 

98.44% 99.67% 3.012×108 1520 

21598 
96.91% 98.48% 4.531×108 1040 

MOPSO 98.58% 99.31% 3.561×108 1200 

98.43% 99.69% 3.013×108 1520 

 

 [
 D

O
I:

 1
0.

22
06

8/
IJ

R
A

R
E

.6
.2

.8
3 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
ra

re
.iu

st
.a

c.
ir

 o
n 

20
25

-0
7-

17
 ]

 

                            10 / 11

http://dx.doi.org/10.22068/IJRARE.6.2.83
https://ijrare.iust.ac.ir/article-1-231-en.html


   M.H. Bigharaz 

                                                                     International Journal of Railway Research (IJRARE)       93 

Intelligent Transportation  System, Vol. 16, No. 
4, (2015), pp. 2061–2071. 

[4] L. Yang, K. Li, Z. Gao, X. Li, Optimizing 
trains movement on a railway network, Omega 
the International Journal of Management 
Science, Vol. 40, (2012), pp. 619-633. 

[5] S. Lu, S. Hillmansen, C. Roberts, A power 
management strategy for multiple unit railroad 
vehicles, IEEE Transactions on Vehicular 
Technology, Vol. 60, (2011), pp. 406-420. 

[6] K.K. Wong, T.K. Ho, Coasting control of 
train operation by genetic algorithm, Department 
of Electrical Engineering, Hong Kong 
Polytechnic University, Kowloon, Hong Kong, 
(2001). 

[7] A. Moon-Ho Kang , GA-based algorithm for 
creating an energy-optimum train speed 
trajectory, Journal of International Council on 
Electrical Engineering, Vol. 1, No. 2, (2011), pp. 
123-128. 

[8] D. Yong, L. Haidong, B. Yun, Z. Fangming, 
A two-level optimization model and algorithm 
for energy-efficient urban train operation, 
Journal of Transportation Systems Engineering 
and Information Technology, Vol. 11, (2011), 
pp. 96-101. 

[9] R. Liu, L.M. Golovitcher, Energy-efficient 
operation of rail vehicles Transportation 
Research Part A: Policy and Practice, Vol. 37, 
No. 10, (2003), pp. 917–932. 

[10] M.H. Bigharaz, A. Afshar, A. Suratgar, F. 
Safaei, Simultaneous optimization of energy 
consumption and train performances in electric 
railway systems, 19th World Congress of the 
International Federation of Automatic Control 
(IFAC), Cape Town, South Africa, Vol. 47(3), 
(2014), pp. 6270-6275.  

[11] Sh. Lu, S. Hillmansen, T. Kin Ho, C. 
Roberts, Single train trajectory optimization, 
IEEE Transactions on Intelligent Transportation 
Systems, Vol. 14, (2013), pp. 743-750.  

[12] W. Qing, C. Cole, T. McSweeney, 
Applications of particle swarm optimization in 
the railway domain, International Journal of Rail 
Transportation, International Journal of Rail 
Transportation, Vol. 4, No. 3, (2016).  

[13] R. Abousleiman, O. Rawashdeh, Electric 
vehicle modelling and energy-efficient routing 
using particle swarm optimisation, IET 

Intelligent Transport Systems, Vol. 10, Issue 2, 
(2016), pp. 65–72. 

[14] M.H. Bigharaz, Simultaneous optimization 
of energy consumption and service quality in 
electric railways, The 5th International 
Conference on Recent Advances in Railway 
Engineering, Tehran, Iran, (2003), 
https://www.civilica.com/Paper-ICRARE05 
ICRARE05_118.html 

[15] C.J. Goodman, Modelling and simulation, 
railway electrification infrastructure and 
systems, (2011), pp. 22-31. 

[16] Sh. Lu, Optimising power management 
strategies for railway traction systems, Phd 
Thesis, University of Birmingham, (2011). 

[17] K.K. Wong, T.K. Ho, Coast control for 
mass rapid transit railways with searching 
methods, IEE Proceedings -Electric Power 
Applications, Vol. 151, No. 3, (2004), pp. 365–
376. 

[18] S. Hillmansen, C. Roberts, Energy storage 
devices in hybrid railway vehicles: A kinematic 
analysis, Proceedings of the Institution of 
Mechanical Engineers, Part F: Journal of Rail 
and Rapid Transit, Vol. 221, No. 1, (2007), pp. 
135–143. 

[19] R. Chevrier, G. Marlière, J. Rodriguez, 
Saving energy in railway management with an 
evolutionary algorithm, 9th World Congress on 
Railway Research, Lille, France; (2011).  

[20] B.P. Rochard, F. Schmid, A review of 
methods to measure and calculate train 
resistances, Proceedings of the Institution of 
Mechanical Engineers, Part F: Journal of Rail 
and Rapid Transit, Vol. 214, No. 4, (2000), pp. 
185–199. 

[21] K. Deb, A. Pratap, S. Agarwal, T. 
Meyarivan, A fast and elitist multiobjective 
genetic algorithm: NSGA-II, IEEE Trans. on 
Evolutionary Computation, Vol. 6, No. 2, 
(2002), pp. 182-197. 

[22] C.A.C Coello, G.T. Pulido, M.S. Lechuga, 
Handling multiple objectives with particle 
swarm optimization, IEEE Trans. on 
Evolutionary Computation, Vol. 8, No. 3, 
(2004), pp. 256-279. 

[23] J. Andersson, Multiobjective optimization 
in engineering design, Phd Thesis, Department 
of Mechanical Engineering Linköpings 
University, Sweden, (2001). 

 [
 D

O
I:

 1
0.

22
06

8/
IJ

R
A

R
E

.6
.2

.8
3 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
ra

re
.iu

st
.a

c.
ir

 o
n 

20
25

-0
7-

17
 ]

 

Powered by TCPDF (www.tcpdf.org)

                            11 / 11

http://dx.doi.org/10.22068/IJRARE.6.2.83
https://ijrare.iust.ac.ir/article-1-231-en.html
http://www.tcpdf.org

