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1. Introduction 

Railway transportation is one of the most 
important components of public transportation, 
especially in the form of metros in large cities. 
Metro lines are inherently unstable. This means 
that any deviation from the nominal schedule of 
a given train is amplified over time and disturbs 
the operation of the other trains [1]. Unwanted 
disturbance causes deviations from the 
timetable, propagates delays and increases 
passenger dissatisfaction; thus, real-time control 
is necessary to regulate the traffic and prevent 
instability along the line. Regulation strategies 
try to recover train delays by varying the nominal 
running time and/or nominal dwell times at 
platforms [2].  

Railway operations are planned at four levels 
of hierarchy: strategic, tactical, operational 
control and real-time control. Strategic 
operations are handled by railway policy-makers 
and relate to long-term decisions, whereas 
tactical operations are developed annually, 

monthly, or weekly as applicable. Operational 
control and real-time control regulate the traffic 
to maintain the nominal timetable in the presence 
of disturbances and any deviation from the 
existing timetable. Researchers consider 
scheduling to be a strategic or tactical operation 
and rescheduling to be an operation requiring 
operational or real-time control [3]. The 
complexity of the metro traffic system demands 
rescheduling and regulation approaches that can 
find optimal solution for delay recovery 
problem. Traffic regulation in a metro line is the 
task of restoring feasibility in the face of 
disturbance and limiting the propagation of 
delays throughout a traffic network [4].   

Automatic control methodologies are 
currently used to regulate the metro traffic. In 
metro-type railways operated according to a 
published timetable, complete timetable 
recovery is the main aim of regulation [2]. These 
methods are required to minimize the number of 
delayed passengers, decrease the sum of all train 
delays and decrease total delay cost [5].  
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Van Breusegem et al. [1] undertook metro 
traffic modeling and regulation for a high-
frequency metro traffic system with open lines 
and loop lines. They designed optimal state 
feedback which guarantees the stability of the 
traffic system. Fernandez et al. [2] introduced 
predictive traffic regulation for metro loop lines. 
They used quadratic programming to optimize 
the cost function along a time horizon in the 
presence of operational constraints. The 
operational constraints were bounds on control 
actions, minimum intervals and constraints 
related to signaling systems. Grube and Cipriano 
[6] introduced two new strategies, heuristic rules 
and Model Predictive Control (MPC), for real-
time traffic regulation in a metro system. These 
strategies used holding times of trains at stations 
to minimize passenger wait times. It was shown 
that MPC strategy is more effective than the 
heuristic strategy by reducing the waiting times 
and travelling times. 

Assis & Milani [7] introduced a linear-
programming-based model predictive control for 
optimal train schedules in metro lines. This 
methodology effectively generates metro line 
train schedules for a whole day of operation or 
for one major segment. It can modify the train 
schedule online during commercial operation for 
a segment of a given schedule in response to 
unexpected local passenger demand 
disturbances. 

Lin & Sheu [8] proposed an adaptive optimal 
control (AOC) algorithm for traffic regulation. 
This algorithm learned traffic data using 
artificial neural networks and could approximate 
the optimal traffic regulator. The efficiency of 
the AOC algorithm for traffic regulation was 
verified in a simulated system using traffic data 
acquired from a real metro line. Sheu & Lin [9] 
developed an AOC method to design automatic 
train regulation (ATR) and find a near-optimal 
solution more rapidly and accurately than does 
dual heuristic programming. Van den Boom & 
De Schutter [10] discussed a model of predictive 
control (MPC) for dynamic traffic management 
of railway networks. The goal of this 
methodology is to delay recovery by changing 
the departure time of trains and breaking the 
connections.  

The linear quadratic regulator (LQR) and 
MPC are multivariable controllers that have 
been effectively used in many industrial 
applications. The key difference between the 

MPC and LQR is that predictive control solves 
the optimization problem using a moving time 
horizon window and LQR solves the same 
problem within a fixed window. The advantage 
of the MPC is its ability to perform real-time 
optimization with hard constraints on plant 
variables. The LQR is suitable for problems with 
limited computational power [11].  

The present study designs automatic traffic 
regulator based on the LQR and MPC to recover 
delays in the loop line of a metro system by 
changing running times in the presence of 
operational constraint for control effort. The 
effectiveness of the controllers in the presence of 
disturbances and operational constraints is 
designed and compared.  

 

2. Traffic Model 

This section introduces a dynamic model for 
a traffic loop line relating to the departure times 
of each train from different platforms. The 
model is a closed line with N platforms, where 
platform {N} is connected to platform {l}, and 
where a given set of trains (indices {1} to {M}) 
operates periodically [1]. 

Traffic modeling comprises three main parts 
of departure time, dwell time and running time. 
Departure time can be expressed as shown in 
Equation(1). All upper indices denote train 
number and lower indices denote platform 
number.  

 

1 1
i i i i
k k k kt t r d     (1) 

where: 

 i
kt  denotes departure time of train {i} at 

platform {k}. 

 i
kr  is running time of train {i} between 

platform {k} and {k+1} . 

 1
i
kd   is dwell time of train {i} at platform 

{k+1}. 
 
 

 It is assumed that the number of trains, 
headway and number of passengers arriving at a 
given platform per second are constant and that 
the running time of a train between two 
successive platforms does not depend on the 
number of passengers on the train [1].  
The dwell time of train {i} at platform {k+1} can 
be expressed as:  

 1
1 1 1 1 1+i i i i

k k k k kd D c t t w
        (2) 
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where the dwell time depends on the nominal 
dwell time at each platform as denoted by D; 

1kc   is delay rate and represents the effect of the 

time interval between two successive trains {i-
1} and {i} at platform {k+1} on the dwell time; 

and 1
i
kw   is the disturbance term.  

In Equation (3), i
kr  is the running time of 

train {i} and is composed of nominal running 
time Rk between platform {k} and {k+1} and 

control signal i
ku  applied to the traffic system to 

increase or decrease running time. As shown, 

0i
ku   increases the running time and, 

conversely, 0i
ku   decreases the running time. 

 
i i
k k kr R u    

(3) 
 

Equations (1)-(3) can be used to obtain 
Equation (4) as: 
 

1
1 1

1

1 1 1 1

1
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1 1 1 1

          
1
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i k k k k k
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k k k k
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(4)  

The nominal headway in each platform is 
expressed in Equation(5), where 

,
i
k nt  is the 

nominal departure time for train {i} at platform 
{k}: 
 

1
, ,
i i
k n k nH t t   (5)  

 

Time deviation (TD) 
i
kt  is defined as the 

difference between the actual departure time and 
the nominal predefined departure time as: 
  

,
i i i
k k k nt t t                                       

         
(6)   

 
Using Equations (1), (2) and (5), Equation 

(6) can be obtained to show the relation between 
the nominal departure time for train {i} at two 
successive platforms {k} and {k+1} as: 
 

1, , 1
i i
k n k n k kt t c H D R      (6)  

 

From Equations (1)-(6), Equation (7) can be 
obtained to represent the dynamic behavior of 
TD as: 
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(7)  

For better understanding of the relation 

between the variables and to represent a state 

space model for TDs in a loop line without loss 

of generality, consider a special case containing 

2 trains {M=2} and 10 platforms {N=10} as: 

 
1i 
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(8) 

2i 
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By defining state vector i

jX , input vector 
i
jU  and disturbance vector i

jW  as:  
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1
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 (9)  

 
the corresponding state space model becomes: 
 

1 [ ] [1, ]i i i i
j L j L j jA B i M    X X U W  (10)

  

where: 
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3. Objective Function and LQR Design 

The main objectives of any traffic regulator 
in a metro system are to minimize the TDs and 
increase passenger satisfaction with minimum 
control effort. Consequently, the cost function is 
defined as shown in Equation(12). It includes 
three quadratic terms subject to TD, passenger 
satisfaction to balance deviation at all platforms 
in relation to one another, and control action. 

Cost function (12) is similar to the function 
defined by [1] and [2]. Fernandez et al . [2] 
explained that, if the line is operating according 
to a predefined timetable, the value of weighting 
matrix P  must be large enough to allow total 
delay compensation when compared with the 
value of the other weighting matrices. If the line 
is operating according to a predefined headway, 
weighting matrix P  could theoretically be equal 

to zero and weighting matrix Q  must be 

sufficiently large. In this case, the solution 
reaches headway regularity, but does not 
completely compensate for the delays as:  
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(13)  

3.1. LQR without constraints  

  The optimal state feedback based on LQR 
control methodology without consideration of 
constraints on control action and state variables 
is obtained by minimizing objective function 
(12) [1] as: 

 

1
( ) .

                          ( )

i T
j M L L

T T i
L L L N j

P Q

P Q
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U

X

 

(14)  

 

3.2. Constrained LQR 

Metro traffic regulation, as for nearly all real 
world optimal control systems, has constraints 
which should be satisfied. In this study, bounds 
on the amplitude of control actions have been 
considered. Constraints on control actions can be 

expressed as
min max

i
jU U U , where minU  

and maxU  are vectors in which the elements are 

the lower bounds and upper bounds of control 
actions, respectively. 

In constrained optimization, cost functions 
are solved in the presence of constraints. There 
are different methods for solving these kinds of 
problems. Sequential quadratic programing 
(SQP) with quadratic objective functions is an 
effectiveness algorithm. The aim of this method 
is to solve a nonlinearly constrained problem 
using a sequence of quadratic programming 
(QP) [12]. The following algorithm details the 
steps of constrained LQR design using SQP 
methodology. 
 
Algorithm of constrained LQR 

Step 0: Set i M and 1j    

Step 1: Initialize i
jX  

= 0 
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Step 2: Define the value of disturbances that 

have occurred as ( i
jW ) 

Step 3: Minimize cost function J, (12), 

based on the SQP algorithm and 

obtain i
jU  

Step 4: Insert 
i
jX , i

jW  and i
jU  into (10) 

and obtain 1
i
jX  

Step 5: Set 1j j   and return to step 2 

until j L N  , where L is 

number of the loops  which trains 

orbit 

 

4. MPC 

MPC is a popular controller design method in 
the process industry. Predictive control 
incorporates the prediction of system behavior 
into its formulation. The estimate of future 
system variables can then be used in the design 
of control laws to achieve good control 
performance, which is usually to drive or 
maintain the output to a desired set point [13]. 
An important advantage of MPC is that the use 
of a finite horizon allows the inclusion of 
additional constraints [14]. 

A common class of model predictive control 
is generalized predictive control (GPC). The 
GPC recursive formulation can be explained as 
follows. 

Consider a state space model of a system as: 

 

( 1) ( ) ( )

( ) ( )

x j Ax j Bu j

y j Cx j

  


 (15)  

 
The structure of model (15) is used to 

formulate the predictive controller. The 
definition of a state prediction model is: 
 

ˆ ˆ( | ) ( 1| )

                     ( 1| )  1,2,..,

x j r j Ax j r j

Bu j r j r p

    

  

 

(16)  

where ˆ( | )x j r j  denotes state vector 

prediction at instant j  for instant j r . The 

prediction of output is shown in Equation (17) as 
the recursive operation: 
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(17)  

where 1p  is the output prediction horizon and 

2p is the control prediction horizon. The matrix 

form of (17) is: 
 

( )Y Gx j FU   (18)  

where: 
 

1
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Predictive control law can be obtained by 
minimizing the appropriate objective function. 
In this case, the first M rows (for multivariable 
system with M input variables) of matrix U  are 
applied to the system. In the next step, the 
control effort should again be calculated [13]. 
 

4.1. MPC without constraints 

Section 2 presented the state space model of 
metro traffic as depicted in Equation(10). A 
comparison of state space models (10) and (15) 
produces the following for design of the GPC for 
traffic regulation: 

 

L

L

A A
B B
C I





 (19)  

 
The traffic model is a linear multivariable 

system with M  input variables and N  output 
variables. The compact formulation of the output 
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prediction subject in Equation (18) for the traffic 
system is: 
 
 
 

i i i
j j jY G FU X  (20) 

where: 

2
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1| 2| |

1| 2| |
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U U U

X X X



 (21) 

 
As in LQR design procedure, the objective 

function of traffic regulation is as shown in 
Equation(12); however, for GPC design, it 
should be rewritten in predictive form as: 
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where P ,Q  and NS  are: 

1 1

1 1

1 1

( ) ( )

( ) ( )

( ) ( )

0 0

0 0
 

0 0

0 0

0 0

0 0
 

0 0

0 0

0 0

0 0

0 0

0 0

p N p N

p N p N

N

N

N

N
p N p N

P

P
P

P

Q

Q
Q

Q

S

S
S

S

  

  

  

 
 
 
 
 
  

 
 
 
 
 
  

 
 
 
 
 
  





 







 







 



 

 

 

(23) 

The control law is obtained as shown in 
Equation (24) by minimizing cost function (22). 
Notice that only the first M  rows of i

jU  are 

applied to the metro traffic system; the other 
elements should be removed. In each iteration, 

i
jU  should again be calculated:  

0

2 2 2

   2 2 2 0

i
j

T i T i T i
Nj j j

T i T i i
j j j

J

U

F PG F QG F QS Y

F PFU F QFU U
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1  [I ( ) ] .
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i T
j

T i T i
j N j

U F P Q F

F P Q G F QS Y





    

 X

 

(24) 

4.2. Constrained MPC 

   As in constrained LQR design procedure, 
the bounds on the amplitude of control signals 
are considered to be

min max
i
jU U U , where 

minU  and maxU  are vectors with elements for the 

lower bounds and upper bounds of control 
action, respectively. The SQP algorithm is used 
to minimize the objective function [15]. The 
following algorithm shows the details of the 
steps for constrained MPC design using SQP. 
 

Algorithm of constrained MPC 

Step 0: Set i M and 1j   

Step 1: Initialize 0i
j X  

Step 2: Define the value of disturbances that 
have occurred as ( i

jW ) 

Step 3: Enter 
i
jX  

into Equation (20) to 

obtain 
i
jY  

Step 4: Minimize the cost function J, (22), 
based on the SQP algorithm to 

obtain 
i
jU  

Step 5: Apply only M rows of 
i
jU   to the 

system ( i
jU = first M rows of 

i
jU ) 

Step 6: Insert 
i
jX , i

jW  and i
jU  into 

Equation (10) to obtain 1
i
jX  

Step 7: Set 1j j   and return to step 2 

until j= L N , where L is the 
number of the loop around which 
trains orbit 
 

5. Simulation Results 

The simulations consider a traffic loop line in 
which the number of platforms is N = 10 and the 
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number of trains is M = 4. The parameters of the 
traffic model and objective function are 

1 0.1kc   , 10N  , 4M  , 10p  , 4q  ,

4L  and  40N L  . Simulation results are 
presented for two main cases. Figure 1 shows the 
constraints on control actions. 
 

Case 1: LQR and constrained LQR 

Figure 2 shows the time deviations for four 
trains when LQR and constrained LQR are 
applied to the system. Figure 3 shows the control 
actions for these two controllers. The amount of 
delay is now increased in the traffic system as 

1
7 100w  , 

2
4 150w  , 

3
3 150w   and 

4
5 300w  . 

The simulation result is shown in Figure 4. It is 
clear that the constrained LQR was unable to 
recover from the delays. 

Case 2: MPC and constrained MPC 
The MPC and constrained MPC are used to 

tackle large disturbances 1
7 100w  , 2

4 150w  , 
3
3 150w   and 4

5 300w  . Figures 5 and 6 show 

the simulation results in which the MPC and 
constrained MPC are able to dampen the time 
delays and regulate the metro traffic that the 
constrained LQR cannot regulate. Table 1 
compares the LQR and MPC controllers. Note 
that the constrained LQR could not handle large 
time delays. All simulations were conducted on 
a PC (CPU: Intel Core i7; 2.00 GHz; RAM: 6 
GB; 64-bit Windows 8 OS) in the MATLAB 
8.0.1.604 software environment. 

 
Figure 1. Upper and lower bounds of control 

signals 

 

 

 
 

 
Figure 2. Time deviation for departure times in 

LQR and constrained LQR. 

 
 

 
Figure 3. Control signals for LQR and constrained 

LQR 
 
 

Figure 4. Time deviation of departure times for 
constrained LQR. 
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Figure 5. Time deviation of departure times for 
MPC and constrained MPC. 

 

Figure 6. Control signal for MPC and constrained 
MPC. 

 

 

6. Conclusions 

This study focused on traffic regulation of 

metro systems. A real-time delay recovery 

problem for metro loop lines using constrained 

Model Predictive Controller (MPC) and 

constrained Linear Quadratic Regulator (LQR) 

controllers in the presence of operational 

constraints on control action is considered. 

These two types of controllers were 

implemented to metro traffic model for 

recovering delays. The performance of the MPC 

and LQR were compared for traffic regulation. 

Simulation results show that constrained MPC 

performed better in comparison with the 

constrained LQR. Whereas, the MPC was 

computationally intensive, especially for large-

scale metro traffic systems. 
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Table 1. Comparison of LQR and MPC controllers 

Controller 
Type of 

controller 
Performance 

Elapsed 
computation time 

(Sec) 

Computing 

Software 

LQR 

Without any 
Constraint 

Tackle any time delays 0.005980 

MATLAB 
With 

Constraint 

Tackle the normal values of 
time delays 

2.201511 
 

Failed in deal with large 
values of time delays 

--- 

MPC 

Without any 
Constraint 

Tackle any time delays 0.059 

With 
Constraint 

Tackle the large values of 
time delays 

6.521701 
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