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A B S T R A C T 

One of the strategies for reduction of energy consumption in railway systems is to execute efficient driving by 
presenting optimized speed profile considering running time, energy consumption and practical constraints. In 
this paper, by using real route data, an approach based on combination of Genetic and Particle swarm (GA-
PSO) algorithms in order to optimize the fuel consumption is provided. The model of train takes into account 
the length and mass of train, running resistance, tractive effort curves for each notch, signaling system, 
variations of the motor efficiency with respect to speed and effort ratio, auxiliary equipment consumption and 
rotary inertia. The route characteristics included in the model are speed limits, gradients, gradient transitions 
(and its effect along the train) and curves. GA-PSO algorithm combining the benefits of both the original 
algorithms GA and PSO is validated by formulating the optimization problem. The GA-PSO performance is 
evaluated by comparing it with a GA algorithm. Further, it has been used to obtain the optimal speed profiles 
for Tehran- Tappe_sefid block, on GT26CW locomotive. 
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1. Introduction  

The trains on most railway systems are driven based 
on the drivers' knowledge of the line, current train 
parameters, and of course, on the information they 
obtain through the signaling system. The basic idea of 
the paper is to give the drivers some information from 
the route and advises on the way of driving, thereby 
enhancing their ability to run the trains in an optimal 
way. 

Since the earlier 1980, P.Howlett and P. J. Pudney [l, 
2] and Chang. C. S & Sim. S. S [3] proposed GA as an 
optimal approach and they have studied the train optimal 
control in 1997. In [4] an approach for optimization 
problem based on variable-length real matrix coding 
Multi-Population Genetic Algorithm (MPGA) is 
proposed. This method is claimed to be able to optimize 
train energy consumption and improve convergence rate 

and promote stability. In [5] by considering movement 
constraint, a model of urban transit network based on 
genetic-annealing algorithm is proposed, to optimize 
time and energy consumption on three lines. The authors 
claim that implementation of this method leads to 
energy-saving ratio above 20%. Chen et al. [6] proposed 
genetic algorithm is used to optimize train scheduling, 
avoiding the simultaneous acceleration of too many 
trains, in order to reduce peak power consumption.  

In [7] by developing an optimization model for 
maximizing the utilization of regenerative energy 
through modifying dwell time for trains of stations. In 
this reference, a hybrid genetic/linear programming 
algorithm was implemented to solve this problem. 
Bocharnikov et al. [8] presented a single train speed 
profile optimized model by genetic algorithm, 
considering both tractive energy consumption and 
utilization of regenerative energy. In addition, a multi-
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train simulation for estimating the effects of the optimal 
speed profile on reducing energy consumption was 
performed. Ding et al. [9] have designed a genetic 
algorithm to search for the optimal solution by 
formulating the energy-efficient train operation problem 
as a two-level optimization model. The first level 
defines the suitable coasting point of running section of 
the trains, and the second level determines the travel 
time for each section to minimize the tractive energy 
consumption. Han et al. [10] considered a train that is 
driven by automatic operation mode along a non-
constant gradient, curve and with speed limits. Genetic 
algorithms used to solve the optimal train driving 
strategy. The approaches based on simulation offer more 
promising alternatives. They do not require 
simplifications in the models and enable an accurate 
calculation of the running times and the energy 
consumption.   

Wang et, al. proposed a train trajectory optimization 
method under real-time rail traffic management in which 
a set of positions with a target time and speed point is 
considered for each train. With objective of 
minimization the energy consumption, this problem is 
formulated as a multiple-phase optimization model [11]. 
Zhao developed a train trajectory optimization 
algorithm in which a tradeoff between reductions in 
train energy usage and increases in delay penalty has 
been considered. Three methods includes enhanced 
brute force, ant colony optimization, and genetic 
algorithm, are used to find the optimal results efficiently 
[12]. Shi et, al. decomposed the train operational plan 
into two sub-problems, i.e., the train departure profile 
optimization which optimizes frequency setting, 
timetabling and the rolling stock circulation at the 
terminal without a yard and the rolling stock circulation 
optimization in which maximum headway function is 
generated to ensure the service of the train operational 
plan without considering travel demand [13].  

Haahr et, al. proposed a time-space graph  
formulation which can be solved by dynamic  
programming. In this algorithm, Instead of using 
uniform discretization of time and space, an event-based 
decomposition which reduces the search space is used. 
This approach has good property such as high flexibility, 
easy to handle, e.g., speed limits, changes in altitude, 
and passage points that need to be crossed within a given 
time window [14]. Wang et, al. proposed the greedy 
approach and the simultaneous approach to solve 
optimal train trajectory. The trajectory planning problem 
is transformed into a mixed integer linear programming 
problem. To formulate the problem, the varying line 
resistance, variable speed restrictions, and maximum 

traction force are included in the main problem. A piece-
wise affine model is considered as the nonlinear train 
model and the energy consumption of trains is 
considered as the objective function [15]. 

Scheepmaker et, al. presented a literature review on 
energy-efficient train control and the related topic of 
energy-efficient train timetabling, from the first simple 
models from the 1960s of a train running on a level track 
to the advanced models and algorithms of the last 
decade. Meanwhile, Pontryagin’s Maximum Principle 
has been detailed to derive optimal driving strategy of a 
train under different conditions [16]. Ye et, al. addressed 
the optimal control of a fleet of interacting trains, and 
the optimal train control involving scheduling. Two 
method is proposed to solve the problem. The first 
assumes an operation sequence of maximum traction, 
speedholding, coasting, maximum braking on each 
subsection of the track. The travel distance and energy 
consumption of each operation can be calculated in a 
closed-form and the optimal train control problem is 
formulated and solved as a nonlinear programming 
problem [17]. 

Kamuzava et. al developed an energy-efficient speed 
profile generator by combining partial energy-oriented 
driving approaches when the planned running time is 
given. In this method, the generator has been added to 
existing shortest running time calculation software, so 
that it works for various vehicle and train route data [18]. 
Su et, al. used A parallel multipopulation genetic 
algorithm to optimize the train control strategy, which 
considers not only energy consumption, but also running 
time, security, and riding comfort. In this method, train 
traction property and braking property was explored 
detailed to ensure the accuracy of running [19]. 

The structure of this paper is as follows: section 2 
presents the simulation model of train. Then, the GA, 
PSO, and combination of these two algorithm are 
mentioned in Section 3. Section 4 describes 
identification of GT-26CW locomotive main resistance 
with specific number of wagons and formulating train 
resistance by Davis coefficient. Section 5 formulates 
train traction force by real data in each notch and by 
using interpolation method, Then, a case study of real 
path is mentioned in section 6 and all parameters of line 
is described and proposed algorithm is compared to GA 
algorithm under operational constraint to show the  
performance.  Section 7 describes a test to tune GA-PSO 
parameters and validate them. Finally, conclusions are 
presented in Section 8. 

2. Train Simulation Model 
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For designing an energy efficient driving profile, 

the decision variables are speed  v and control 

settings  j  in order to minimize the cost function 

 J  by considering the train journey constraints 

(speed limitation, maximum traction effort, etc.) to 
make accurate decision. The model of train takes into 
account the length and mass of train, running 
resistance, traction and brake force curves, variation 
of motor efficiency in each control setting with 
respect to speed and effort ratio. The line 
characteristics involved in the model are speed limits, 
tunnels, gradients, grade transitions, bends and their 
effects along the train.  

     For locomotives with discrete control settings, 

such as GT26-CW diesel-electric locomotive, the 

control mechanism of locomotive can be represented 

by an integer control variable j. Each non-negative 

value of control variable determines a traction control 

and each negative integer value determines a brake 

control. It is assumed that traction force  0jf   

when 0j    and 0jf   when 0j  , the system is 

in coasting mode. When 0j   the power generated 

by the diesel is directly proportional to the rate of fuel 

consumption. When 0j  , a constant, negative force 

applied to train [2], when the train is in braking mode. 

Train operation state equation can be described as 

follows: 

(1)   
0( ) ( ) ( ) ( )j j

dv
v f v w v b v g x
dx

      

(2)   1dt

dv v
  

where , ,v t x  are respectively train speed, operation 

time and train position, j   is control setting and   

0( ), ( ), ( ), ( )j jf v w v g x b v  are traction, basic 

resistance, gradient resistance  and braking force 

applied as per unit mass. Train departs from starting 

point and arrives at station during the determined 

time T. train movement is constrained by (3): 

(3)      lim
v x V x  

where  lim
V x  is speed limit. The cost function is 

defined as: 

(4)       
0

X

jJ f v dx x T X     

where X  is the final destination of train movement. 
The cost function is constructed of two sections, the 
integral of traction force and distance of the train to the 
destination at time T. The goal is to minimize these two 
sections. 

3. Optimal speed profile designers 

3.1. Genetic Algorithm 

GA is an iterative heuristic algorithm that has a 
stochastic search mechanism to find optimized solution. 
This algorithm uses techniques such as inheritance, 
mutation, selection and crossover to optimize the 
problem. In this sub section, genetic algorithm is 
designed to solve the integrated energy-efficient 
operation model. The algorithm has the flowing steps. 

1- GA starts by randomly generating an initial 
population of solutions [20].  Three variables are 
selected as notch, lower speed and higher speed for each 
accelerating, coasting and Speed Holding process. The 
lower and upper bond of each variable is placed in a 
vector. 

2- Four individuals as Positions, Cost, Best Position 
and Best Cost is defined. In position individual data, 
three variables are produced and solutions are ranked 
according to the cost function and then Best Position and 
Best Cost for each iteration. 

3- Figure 1 presents general process of GA algorithm. 
The algorithm process can be summarized as follows : 

• Selection operator: This operator selects a number 
of chromosomes in a population. It is obvious that the 
more fitted chromosomes have higher chance to be 
selected for breeding.  

• Crossover operator: This operator applies on a 
chromosome pair and generates a new chromosome pair. 
Usually the possibility of crossover for each pair of 
chromosomes is 0.6 to 0.95 [21]. 

• Mutation operator:  At the end of Crossover 
operation, Mutation operator applies on chromosomes. 
This operator selects randomly a gene on chromosome 
and alters the gene content. 

• By using Crossover and Mutation parents are 
selected for breeding and are combined together to 
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produce new offspring. This process is repeated several 
times to produce the next generation population. 

• The genetic operation runs until termination 
condition are achieved. 

4- Finally, the program retunes to the second step and 
processes repeat [20]. 

 

3.2. Particle Swarm Algorithm 

The PSO algorithm conducts a search using 
population of individuals. The individual in the 
population is called the particle and the population is 
called the swarm [22,23]. In PSO, each particle has a 
velocity, which is initialized randomly based upon the 
bounds prescribed. In addition to the velocity, PSO 
algorithm has a memory of local best (pbest) and global 
best values (gbest). Particle's new velocity is updated 
based on its previous velocity, position, pbest, and gbest 
positions (5), in (6) the new position is calculated by new 
velocity [22]. 

)5(   
      

  
1 1

2 2

1 1

1

i i i i

i i

v n wv n c r p x n

c r g x n

    

  
   

)6(        1i i ix n x n v n     

Where 1,2, , ; 1,2, , .pi N n N    pN  is the size 

of swarm and N is iteration limit; 1c  and 2c  are 

positive constants that are called "social factors"; 1r  and 

2r  are random numbers between 0 and 1; w  determines 

the impact of previous history of velocities on the 
current one. ip  is ith population, ix  is position of ith 

population and ig  is the best position. 

3.2. GA-PSO Algorithm 

GA has a better diversity control during the initial 
stages of the search process, which results in slow 
convergence, whereas PSO  has faster convergence rate. 
These two algorithms have both the features to make an 
ideal search algorithm. Table 1 shows a comparison of 
two algorithms and presents the advantages and 
disadvantages of each algorithm. 

A flowchart of a GA−PSO algorithm is shown in 
Figure 2. Since the new generation of population in GA 
is created by eliminating the old generation, the total 
population is sorted and the better half is used to create 
new population. 

 

 

Figure 1: Flowchart of GA process 

 

Table 1: Advantages and disadvantages of GA and PSO 
algorithms 

Algorithm advantages disadvantages 

 PSO 

-Built-in memory that 

keeps the best velocity 

of previous history. 

-Easy implementation, 

-Low number of 

parameters 

-By increasing the 

dimension, efficiency 

of the algorithm is 

reduced 

-The answer is local 

GA 

[24] 

-global search space, 

Problem independence, 

-robustness of search 

-Slow convergence 

rate, 

-More CPU time 

 

Before updating the velocity of particles, the function 
values of the GA population is used to update pbest and 
gbest directly. Instead of updating the gbest and pbest 
once for every generation in PSO, GA populations 
coupling helps  to update the pbest and gbest values. 
During this step, the velocity of the particles is not 
updated. This additional step of updating the local, 
pbest, and global, gbest, best values show considerable 
improvement in speeding up the algorithm. 

 

4. Measurement and Calculation of train 
resistance  

Different railways have used various approached for 
calculating the train and track resistances [25-26].The 
main purpose of investigating a method to measure and 
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calculate train main resistances is providing accurate 
information on elements that effect train energy 
consumption.  In this paper, tractive effort methods used 
to calculate Davis formula according to (1). 

4.1. Tractive Effort Method 

Train tractive effort calculate by locomotive 
generator power through current and voltage sensors 
data and considering efficiency of traction motor. The 
power helps us to calculate the tractive effort 
considering train mass. In this method, we need to have 
accurate data of track gradients and speed of train. In this 
case, all calculations are done in approximately zero 
acceleration or holding speed. Otherwise, train 
acceleration should be considered.. 

 

Initialize  ½population

Function evaluation, 
Initialize pbest,gbest

Initialize second  ½ population,
Initialize velocity

Function evaluation  ,
Update pbest,gbest

Ending condition

Optimal solution

Update GA population

Function evaluation, 
Initialize pbest,gbest

Update velocity ,particles

Function evaluation ,
Initialize pbest,gbest

No

Yes

 

Figure 2: Flow chart of GA-PSO algorithm 
 

4.2. Process of Modeling Train Resistance 

Prior to calculate train resistance, we need 
information of train speed, track gradients, tractive 
effort, train mass, the number of wagons, some 
geometrical parameters of the train like train area, train 
length, number of locomotive and wagons axels. The 
effects of resistance due to track curvature are ignored in 
current calculation because except for every tight curves 
of less than about 250 m radius, the effects are small 
[27].  

The information of train for 100 routes have been 
analyzed and for every part of track, train resistance have 
been calculated and curve-fitting method have been used 
to extract the train main resistance in (7). Resistance 
force in kgf/ton and speed in kilometers per hour and a 
comparison between train resistance forces that has been 
calculated and the UIC, SNCF and Shin Kasen’s sSeries 
100 [27] is presented in Figure 3.   

)7(   22.148 0.002. 0.0002.R V V     

5. Tractive effort modeling 

When designing speed profile as an advisor for  
guidance of train driver, it is necessary to know how 
much tractive effort is utilizedemployed in every notch. 
The tractive effort of a diesel-electricive locomotive can 
be assessed by locomotive generator power through the 
empirical formula (8). 

)8(   360G
t

P
F

V


    

 

 

Figure 3: Comparison of the train resistance forces 

Where GP is generator power in kW, V  is the 

velocity in km/h,   is the generator efficiency, and tF

is tractive effort of a diesel-electric locomotive in N, 
Tractive effort of GT26CW locomotive, measured at 
each notch is shown in Figure 4. 

Based on the real data, tractive effort can be 
estimated by interpolation method. For example, Figure 
5 reppresents an estimated tractive effort for notch 8. 

6. Simulation and results 

To illustrate the effectiveness of proposed model and 
algorithm, a case study based on the Tehran- 
Tappe_sefid line (Figure 6) is reppresented. Tehran- 
Tappe_Sefid line has a length of 10.1 km, consisting of 
six blocks, with an average gradiant of -1.4 in 1000 
meter. The maximum line speed is defined to be 120 
km/h.  
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Figure 4: Tractive effort at each notch 

 

Figure 5: Tractive force at notch 8. 
 

 

Figure 6: Tehran- Teppe_Sefid gradient. 

Train parameters are introduced in Tables 2. Also 
Table 3 shows the tuned parameters of GA-PSO 
algorithm. 

 

 

Table 2: Train parameters 

GT26CW Locomotive model 
119 Locomotive weight (ton) 

6 Number of locomotive 

axels 

12 Number of wagons  

48 Weight of each wagon 

(ton)  

4 Number of wagon 

axels 

R=2.148+0.002.V+0.0002.V2 Basic resistance (N/ton) 

 

 

Table 3: Tuned parameters of GA-PSO 

Iteration c2 c1 w 
Population 

size 

30 1.5 1.5 0.72 50 

 

Figure 7, describes the optimization for the speed 
profile produced by GA-PSO algorithm for Tehran- 
Tappe_sefid block. The results shown are accompanied 
by notch for each moment, between the block and 
distance signals. Table 4 shows the results of simulation.  

 

Figure 7: GA-PSO optimal speed profile. 

       As shown in Figure 7, after block signal, speed 
increases and accordingly control setting increases up to 
notch 8. Therefore, by increasing in speed notch 
increases and due to the descending path, the most of the 
block is passed by idle notch and speed profile is in 
coasting mode. 

Table 4: GA-PSO simulation results 

76.18 Total energy 

consumption (MJ) 

9.50 Fuel consumption (liter) 

6.5 Trip Time  (min) 

6.2 Distance (km) 

      Figure 8 describes the cost result of applying GA-
PSO. The cost value is decreasing from the first iteration 
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and soon keeps stable at the eighth iteration, which 
reflects a good convergence. 

  

Figure 8: . Cost value of GA-PSO Algorithm. 

       In Figure 9, speed profile generated by GA 
algorithm in 6.5 minutes is shown. The results is 
presented in Table 5. This Figure shows the result is 
similar to GA-PSO speed profile, but in GA, more notch 
8 is used. Therefore, more fuel is consumed. 

  

  

Figure 9: GA optimal speed profile. 

         

 Table 5: GA simulation results 

76.18 
Total energy 

consumption (MJ) 

10.24 Fuel consumption (liter) 

6.5 Trip Time  (min) 

6.2 Distance (km) 

 
 

7. Validation of GA-PSO algorithm 
In order to validate the developed model, Tehran-

Tappe_sefid block is selected. All information 

about control settings of the driver along the 

journey, speed, position and amount of train fuel 

consumption obtained through installed sensors 

on locomotive. As mentioned before, notch is a 

variable that GA-PSO should determine to 

generate speed profile. In this section, in order to 

validate GA-PSO algorithm, the control settings 

(notches) is applied to the GA-PSO algorithm. If 

the output algorithm speed profile from the 

algorithm follows is similar to the actual train 

driver profile, it can be concluded that  the model 

is accurate all modellings that have been done is 

accurate and algorithm works well. , otherwise it 

does not work properly. As shown in Figure 8, 

GA-PSO speed profile tracks the real train driver 

speed profile.  

 

Figure 10: Validation of GA-PSO algorithm 

As shown in figure 10, GA-PSO algorithm (blue 

continues line) tracks the driver speed profile. It 

should be noted that every color on driver speed 

profile belongs to a specific notch (e.g. the color 

of coasting is shown as green). 

 
8. Conclusions 

This paper proposes an energy- efficient 
approach to reduce the traction energy for Tehran-
Tappe_sefid block. In order to have accurate 
practical speed profiles, Basic resistance, curve 
resistance force and tractive force is modeled for 
GT26CW. In order to validate models, control 
settings of driver for a real trip is applied to GA-PSO 
algorithm and that GA-PSO sped profile tracked the 
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drive speed profile that shows the GA-PSO worked 
properly. Finally, GA-PSO speed profile compared 
to GA speed profile. A comparison among real 
Tehran-Tappe_sefid driver speed profile, GA and 
GA-PSO (Figures 7,9,10) shows, the profiles of 
optimized algorithms have been longer in coasting 
mode than the driver's speed profile, As a result, less 
energy consumed by observing the speed limit. Total 
driver fuel consumption for Tehran-Tappe_sefid 
block is 19.84 liters. Table 6 shows an overview of 
fuel consumption and time interval over Tehran-
Tappe_sefid between block and distance signals for 
two optimal algorithms in comparison with driver 
fuel consumption. The results shows that GA-PSO 
optimization algorithm has better energy-efficient 
performance. With an increase of 9.2% over the 
travel time, we have had a 19% and 11% savings in 
fuel consumption, for the GA-PSO and GA 
algorithms, respectively. 

  This should be noted that  one of the reasons 
for increasing the  train driver fuel consumption, is 
fatigue of the railroad fleet and the way of driving. 

Table 6: Comparison in time and fuel consumption for 
GA, GA-PSO and driver speed profiles 

 GA-PSO GA Driver 

Time (min) 6.5 6.5 5.9 
Fuel Consumption (liter) 9.50 10.24 11.8 
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