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A B S T R A C T 

In this paper, some deficiencies of previously conducted studies are pointed out. These are including 

unreliability, dependent to motor and bearing specifications, lack of precision, drawbacks of experimental 

tests and etc. Here some important works will be reviewed. The proposed method which is based on wavelet 

decomposition and tracing the trend of statistical features variations, has overcame most of these 

deficiencies. Experimental results validated the proposed method. Finally, an approach to enhance 

detectability and precision in realistic industrial applications which is based on comparing power factor and 

temperature of tested and industrial application cases, will be presented.    

Keywords: mechanical fault, single point defect (SD), distributed defect (DD), wavelet decomposition, trend 

of variation 
 

1. Introduction 

Multiple benefits of induction motors cause these 

motors to be the first choice of load-driving in 

industries[1]. From these, rational initial cost, lower 

maintenance in comparison to other electric motors, 

reasonable efficiency, technological maturity, ease of 

control and the most important one, capability of 

driving characteristically diversified loads are the most 

beneficial features of them [2]. 

 Railway industry began with DC motors but 

nowadays they are focusing on induction motors (IMs), 

PMSM, BLDC and linear electric motors (LEMs). So 

referred to reasons considered, except for tansrapids 

which utilize LEMs, IMs are still the best choice[3]. 

Also It’s evident that outbreak of faults and then failure 

of IMs leads to two basic difficulties: first case is heavy 

financial costs due to break in production or service 

and the second case which is really a high concern in 

railway industry is the customer trust on quality of 

service[4]. For example in urban transportation, 

consecutive stops lead to customer dissatisfaction so 

people’s relish to utilize form industry decreases and 

restoration of this point of view will be too costly and 

also with future consequences. Nowadays IMs fault 

detection is an important matter which leads to 

significant industrial advantages. Production 

increasement, cost reduction and service improvement 

are included[5]. In this context, there have been lots of 

efforts which in an overview are categorized as 

theoretical and experimental works. Theoretical 

scrutiny of faults [5]–[11] can be compromising and 

helpful for future research but there has been a big 

concern for scholars that to what extent these results 

can be applicable. Experimental efforts [12]–[15] 

which are mainly based on those theoretical 

investigations may lead to effective results but still 



Hoseini et al. 

 

International Journal of Railway Research (IJRARE) 49 

 

there is a great difference to what happens in reality so 

the same question arises. Generally IMs (which are 

drawing point of industries) faults fit into two classes 

of electrical and mechanical. Studies have shown that 

mechanical faults in rate of occurrence and imposed 

costs are leading. Multiple items have been studied as 

mechanical faults such as: bearing faults, eccentricity, 

misalignment, shaft curvature, imbalance distribution 

of shaft mass, elliptical shape of stator or rotor and etc. 

Undoubtedly bearing faults are the most prominent 

kind because according to reports about 50% of IMs 

out of services are due to bearing faults. To bear, two 

studies of IEEE and EPRI is considered as follows [16] 

 

Figure 1. EPRI study on IMs reliability 

 

 

Figure 2. IEEE study on IMs faults 

To investigate mechanical faults, vibration is the 

most appropriate signal [17]. It is due to mounting 

vibration sensors on the nearest location to the fault 

(for example on bearing housing) so there will be 

certainly less noise and higher precision. Moreover due 

to the mechanical nature of these faults vibration 

assessment may lead to better results. The only signal 

which is somewhat a competitive alternative is current 

signal. Lots of studies [12], [18] have utilized it for 

fault detection. Basically in electrical motors, current 

signal variations are due to variation of airgap length, 

so studies have utilized current signal, are exposed to 

some reviews. We sense these variations from machine 

terminals so, there will be much noise injected into the 

signal. If we want to investigate mechanical faults by 

checking machine inductances, we must use Hall 

sensors but firstly, it is not possible to pose Hall 

sensors in all electrical machines and second because 

we need high precision sensors to distinguish small 

faults so the costs will be notable. Moreover machine 

inductances are under the influence of multiple factors 

such as: power supply incoming harmonics, rotor 

skewness, slot effects, saturation and etc [19], [20]. 

And these factors sensivity may also be variable in 

different conditions. Another important point here is 

that, in all machines there are two bearings: front 

bearing and end bearing. Since distinguishing of faults 

of these two bearings through the current signal is 

almost impossible thus in the case of detected faults, 

both bearings must be replaced and if fault detection 

system has made a mistake in its mission, there will be 

a catastrophic disorder. Also with vibration signal if we 

want to have a reliable diagnosis, we must place 

vibration sensors on housings of both front and end 

bearings [21]. It is worthwhile to note that, cost of 

vibration sensors in comparison to Hall sensors is much 

lower and moreover the application of them is more 

feasible. However, the cost of installing a fault 

detection system even with vibration sensors is not 

much low so it is recommended to use these systems 

limited to industries in which, production or service is 

critical and cease of production or service causes severe 

loss [4]. 

A comprehensive study of machine faults conducted 

in [16]. Although scholars were concerning about 

electrical machines failure lots of years ago, but they 

become more decided to take some actions in two past 

decades. Since there are lots of important studies on 

this subject, we cannot bring them all. So we just point 

out some effective and important works with a general 

sight. The initiation of new era on IMs mechanical fault 

detection was started by Toliyat [5] which was 

basically about evaluation of eccentricity on IMs. After 

that, Dorrel and Thomson [22] continued this study and 

depicted relations between airgap eccentricity and flux, 

current and vibration signals. Bangura and Demerdash 

[23] investigated similarities and differences between 
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broken bar and eccentricity faults. Nandi [24] searched 

detection of rotor slots and other eccentricity related 

harmonics in different IMs. Bangura [8] used time 

series data mining and time stepping coupled FE to 

diagnose eccentricities and bar/end ring connector 

breakages. Wu [25] tried to eliminate effect of load 

oscillation on eccentricity detection. Xiaodong [26] 

considered effect of inclined eccentricity 

(misalignment) on performance of IMs. Discrete 

wavelet transform was utilized by Riera-Gausp [27] for 

transient detection of slip dependent fault components. 

Faiz [28] studied eccentricity faults comprehensively 

by means of FE. Nandi [29] proposed a method for 

detecting eccentricity based on nameplate parameters. 

Esfahani [30] investigated eccentricity and bearing 

faults by a multi sensor wireless system. And Gyftakis 

[31] suggested a novel and effective method of static 

eccentricity diagnosis in PSH IMs. All the mentioned 

studies were suffering from lack of precision in IMs 

modelling such that they were neglecting some 

important effects such as slot effects, rotor skewness, 

and saturable teeth reluctances. These factors affects 

directly on evaluation of inductances which are one of 

the most compromising methods of mechanical fault 

detection in IMs. Moreover, their methods of 

simulation were too time consuming. So Ganji [32] 

offered a broadband excitation technique for 

identification of IMs dynamic and static inductances. 

But it wasn’t able to satisfy need for a precise model. In 

[33] Faiz evaluated inductances of IM under mixed 

eccentric conditions. Akbari [34] proposed a modified 

model of squirrel cage IM under general rotor 

misalignment fault. Lately, Ojaghi [35] introduced a 

comprehensive study on modelling eccentric squirrel 

cage IMs with slotting effect and saturable teeth 

reluctances. He also calculated relating inductances. 

However all aforementioned papers are related to 

eccentricities which show themselves in current signal 

in the form of: 

   
              K=1, 2, 3…                                   (1) 

In which fs stands for supply frequency and fr stands 

for rotor frequency and K is a positive integer. Bearing 

fault characteristic frequencies present in the frequency 

spectrum of current signal in the form of [19]:
                                                               

 

               K=1, 2, 3…                                     (2) 

fc is one of the fault related frequencies in vibration 

signal. With a little care, we find these two cases 

become equal in certain frequencies [36] so finding a 

method, capable of detecting both cases by means of 

utilizing aforementioned equal frequencies could be a 

challenging study and leads to lower cost and time 

spending[4]. 

In case of bearing fault, numerous papers are 

presented so we go down to say just categorized form 

of articles without pointing out authors names: 1. some 

studies investigated theoretical models of bearing 

faults[9], [11], [37]. 2. Acquiring which signal is an 

important issue. In [38], [39] vibration signal, in [12], 

[18], [40] current signal and in [41], [42] acoustic 

signal is used. Also one can find comprehensive 

comparison between current and vibration signals in 

[17] and between vibration and acoustic signals in [43]. 

Characteristics of current signal such as: ease of access, 

cost effectiveness and etc. makes it an appropriate 

signal but it is noteworthy to say that in case of 

mechanical faults, vibration signal is the most sensitive 

signal so it is a preferable choice. 3. Ref [10] 

considered different types of bearing faults. They are 

single point (SD) and distributed defects (DD). Lots of 

authors tried to detect single point defects [44]–[46] 

and a few put afford into detection of distributed ones 

[47], [48] and some investigated both cases together 

[47]. 4. An introduction for bearing vibration signal 

processing presented in [49]. It is a useful guide for 

newcomers of this context. 5. One can see effect of 

machine speed on bearing fault detection in [50]. Park 

vector which is a reliable tool to diagnose bearing 

faults, presented in [47]. Authors considered both kinds 

of bearing faults, but a big concern here is that, in a 

noisy environment and different load conditions 

whether this method is still powerful? Furthermore this 

is a simple and really effective method even in early 

detection of faults but need for collecting three phase 

stator currents continuously cannot be completely 

desirable. 6. Statistical features are good candidates for 

tracing faults [13], [15], [51]–[54]. But attention must 

be paid that results for different load or speed 

conditions are not much acceptable. 7. Surely we can 

say that in case of having much data and the situation 

 s rf f Kf 

 s cf f Kf 
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in which decision making is not easy, intelligent tools 

[21], [30], [55]–[58] are great alternatives. But they are 

complex systems and error of these methods are not 

considered at all, neglecting this point, they are really 

promising. 8. As all we know, industrial environments 

are so noisy so an effective method specially for 

finding single point fault features is noise cancellation 

[44], [59], [60]. However this method cannot be used 

effectively in case of distributed defects. Moreover the 

least amount of error in specifying filter bands may 

lead to loss of fault information or in some cases 

increase in noise amplitude. 9. Instantaneous energy 

spectrum [61] is another proposed method which in 

noisy condition shows unreliable results. 10. Ref [62] 

used instantaneous power factor as a tool for 

identifying faults but application of this method on 

distributed faults identification is not evaluated. 11. 

Motor efficiency [63] was used as an indicator to 

diagnose distributed faults but validity and precision of 

obtained results due to severe sensivity of efficiency to 

performance condition is under question. 12. 

Combining statistical time features and neural network 

conducted by [45] are also prone to some reviews that 

mentioned earlier. 13. Among the transformations in 

which, goal is exploitation from frequency, time-

frequency or time domain information, wavelet has an 

exceptional position [52], [64], [65]. It is because of 

various features provided by it. One can perform 

transformation, filteration and noise reduction. But 

there are still some deficiencies such as: mother 

wavelet function, optimized level of decomposition, 

spectrum leakage and expansion and etc. 14. 

Morphological operators [65], [66] are helping us to 

reform shape of a signal. This method can be 

compromising for future signal processing because if 

morphological operators come into use as mother 

wavelet function, leakage and expansion will be the 

least. 15. Data mining approach is also another 

effective method [48]. However studied case here is not 

satisfactory to evaluate proposed method. 16. Finally it 

is noteworthy to say that proposing a unique method 

for investigating important mechanical faults is a 

desired aim [30], [47] which leads to cost reduction and 

more rational results. A comprehensive review and 

bibliography on IMs fault detection can be found in 

[67], [68] respectively. Research history which has 

mentioned here is not complete but almost includes a 

general view for about two decades of research in this 

context. 

Altogether, the proposed method here is utilizing 

from statistical features of segmented time domain 

signal which is demodulated by means of wavelet 

transform. Based on the fact that due to realistic defects 

(such as erosion, lack of lubrication or passing electric 

current through metallic element) broadband changes 

happen in signals, (current or vibration) as it is obvious 

in figure 3, seeking exact frequencies seems to fail in 

this situation[4]. Moreover even with single point 

defects, existence of much noise in industrial 

environments leads us to face a signal like figure 3 so 

analysing trend of variation in segmented high 

resolution signal helps us to have more reliable and 

accurate condition monitoring. Since we don’t add to or 

remove anything from the signal, it has its natural form, 

so reliable results are guaranteed.  

Rest of this paper is organized as follows: In the 
next section, the subject, how bearing faults happen 
and outbreak will be considered. So this section 
generally evaluates previous studies about their point of 
view to the fault creation and experimental test rigs. 
Next, the same thing about signal processing methods, 
in the section signal processing, will be conducted. 
After that, the proposed method will be suggested. 
Then case study specifications will be explained. In the 
next section results and discussions will be brought. 
Then an approach for improvement of detection 
precision in industrial applications will be introduced. 
And finally, conclusions will come.         

 

Figure 3. Captured vibration signal 

2.  How bearing faults happen and outbreak 

In this section the aim is to peruse how bearing 

faults, as the most repetitive kind of mechanical faults, 

happen and outbreak. By the way, generally the 

overview of mechanical faults will not be ignored. In 

numerous studies bearing fault is considered as single 

point defect (SD) which in turn is due to outbreak of a 
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local defect (or two or more) on bearing components 

surfaces and its (or their) impact as small amplitude 

periodic impulses on vibration or current signal. On the 

other hand, fault is considered as distributed defect 

(DD) with large extent, such as a long crack or general 

roughness of bearing component surfaces. As it comes 

from the name, impact of this class of faults on 

vibration or current signals causes widespread changes 

and not periodic impulses. SD and DD are obvious in 

figure 4 and 5 respectively. 

 

Figure 4. Single point defect 

 

 

Figure 5. Distributed defect 

It is said by experts that in reality, bearing faults 

emanate from microscopic cracks or bubbles below the 

bearing component surfaces. Existence of these defects 

due to production imperfectness is inevitable. 

Afterward, these defects penetrate gradually to the 

bearing surfaces due to loading or other causes such as 

overload, impact load, temperature increasement, etc. 

and show themselves in the form of SD or DD. If it is 

DD, as mentioned earlier leads to widespread changes 

in signal under investigation. But, suppose that defect 

outbreaks in the form of SD. However, all we know in 

industrial environments, specifically industries in 

which cease of production or service leads to severe 

loss (basic industries including steel, petrochemical and 

etc. and basic services including subway, etc.) are noise 

opulent. Generally, noise is distributed widespread and 

their relative amplitudes are higher than periodic 

impulses amplitudes due to single point defects. So it is 

expected to face with a signal having widespread 

circumstantial changes, something like DD signal 

which we know, even if it is escorted by noise, still has 

widespread changes in it. With another point of view, 

suppose that length of a defect is longer than the 

distance between the touch points of two adjacent balls 

(rollers). In this case, there is always at least one ball 

(roller), passing on the defected area, so the resulted 

signal may not be impulsive shape and may be close to 

the DD signal. This phenomenon can be compared with 

a situation in which a car is passing on a road which 

has many bumps, so there will be impulsive vibration. 

But if it is a dirt road, vibration will be much higher 

and close to the form of noise. Mentioned cases make 

us to categorize studies in three classes. First class are 

studies which have connivance sight to bearing faults 

and therefore analyze totally fictitious and impractical 

faults[4], [9], [51], [65]. They produced faults by 

perforating bearing components. It is noteworthy that 

removing and replacing, in turn may impose some 

defects, so precision and even validity of our results 

will be under question.  

According to different industrial reports, the main 

reasons of bearing faults are improper lubrication, 

humidity and improper maintenance which are shown 

in figure. 6 obviously [69]. 

 

Figure 6. Industrial reports about reasons of bearing 

failure 

However, other factors such as passing electrical 

current through the bearing, oil contamination and etc 

are also included. Generally, it is evident that such 

factors may lead outbreak of DD and it is so unlikely to 

have a hole in effect of improper lubrication or 

humidity. On the contrary, it is more realistic and 

probable to have general roughness due to 

inappropriate lubrication or corrosion. The second 

group have considered mentioned points to some extent 

and have produced both SD and DD, but there are still 

some reviews about the method they used to create the 

faults[39], [47], [54], [69]. In addition, the test bench 

they have used in some cases are far from reality. As an 

example in a study, authors have used an isolated 

synchronous generator to feed induction motor which is 

under test and have ignored incoming harmonics to the 
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drive or in[42], [62], [70],[71] , they even have not 

used drive to feed electrical motor. In both cases we 

know that, injecting more harmonics could have 

increased motor vibration or torque oscillation which in 

turn leads to vibration enhancement. In some cases all 

the mechanical noise are neglected. They implement 

load changing by a dynamometer (DC generator) and a 

set of resistances to waste energy or in other efforts by 

a synchronous generator and a rectifier and a set of 

resistances to waste energy. And it is also implemented 

by a controlled coupling brake. However, certainly we 

know that mechanical tensions which are noise in our 

diagnosis process, may exist and surely affect on 

results obtained from vibration or current signals. 

Finally the third group[30],[45], [48] [72]who has 

observed aforementioned points to some extent and can 

go through the next stage which is signal processing. 

Although, one can improve resulting signals of first and 

second groups by adding noise but this may lead the 

experiments to be worthless.  

3.  Signal processing 

The main objective is to have simple, low cost, 

precise, reliable and expandable diagnosis. It is safe to 

say that, after meeting the requirements of previous 

section, it is signal processing which has an important 

role in the way to attain this purpose. In recent years 

numerous methods have used by researchers which 

stand in three general groups. The first group are 

transforms such as: Fourier, wavelet, Hilbert, etc 

transform in which the aim is to utilize from frequency, 

time or time-frequency information of signal in 

accordance to what we have and what we want [14], 

[48], [52], [61], [65]. Challenges in these methods are: 

resolution, transform mother function, effect of 

transformation on data, stability and reliability of 

outputs, sensivity to noise, etc. Note that still this kind 

of signal processing, depending on application can be 

the best choice for fault detection. 

The second group efforts are based on noise 

reduction of signal [59], [60], [72]. The goal here is to 

increase the signal to noise ratio. This method generally 

is exploited for diagnosing SDs, but in the case of DD, 

it is not much trustable. Even in case of single point 

defects due to difficulties to synchronize healthy 

(noise) and faulty (noise + desired signal) signals, 

existence of very little lagging may lead to increase 

noise amplitudes and unreliable results. It is more 

common in real industrial applications where fault 

frequency components and noise frequency 

components may be the same. However as mentioned 

earlier, DD symptoms are propagated throughout the 

signal, so removing some parts of signal 

(transformation to frequency domain and then filtering) 

leads to exclusion of fault indices and low precision 

decision making. 

The third kind of applied methods are combinations 

of previously mentioned methods. Lately an important 

question has occupied researchers’ mind [13] which is 

expandability of proposed methods. Whether we can 

apply a proposed method related to a specific case 

study to other different case studies? Or in other word 

is it possible to utilize from one fault detection method 

for a wide range of power and specifications of an 

understudy machines? Another important question 

which has to be answered is do they evaluate errors of 

fault detection methods? And if a complicated method 

goes wrong is it possible to troubleshoot it easily? 

Moreover, these systems often cost so much, whether 

unit cost of these fault detection methods are 

reasonable and applicable? 

4.  Proposed method 

The proposed method is simple, intelligent, reliable, 

inexpensive and feasible in industrial applications. As 

mentioned earlier, transforms are often the most 

effective signal processing tools. Among them, wavelet 

has a specific position because it is a bipositional signal 

processing tool which gives us both time and frequency 

domain information. Actually the form of mother 

wavelet function we use, will have inevitable effects on 

results. But if we use time domain decomposed signal, 

we make as less as possible changes but splitting signal 

into smaller sections to enhance precision. Steps are as 

follows: 

1. Choosing mother wavelet function: Here 2
nd

 

order dmyer mother wavelet is chosen for two 

reasons: firstly, correlation analysis between the 

original signal and combination of decomposed 

signal sections shows good agreement. Second, 

this wavelet is impulse shape which gradually 
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attenuates along both sides so it can be a 

comparable shape of SD frequency with its 

sidebands.  

2. Number of decomposition levels: 10 level 

decomposition conducted. The goal is making 

smaller under investigation bands to enhance 

precision. Note that after tenth level, residual is 

going to be a straight line with no useful 

information about the fault. 

3. Investigation of variation of statistical features: 

Finally, the trend of variation of statistical 

features throughout the 10 level decomposition 

has been studied. Comparing trends of healthy 

and faulty statistical features leads us to 

existence of fault. Among the statistical features 

such as: mean, median, standard deviation, crest 

factor, etc, we chose mean and standard 

deviation because they show the most tangible 

variation due to existence of fault. Note that, 

some features such as mean and median show 

the same behavior, so one of them is selected. 

 

5.  Case study specifications 

Experiments, motor, bearing and fault specifications 

which are explained in this section, are all adopted 

from Case Western Reverse university bearing data 

center [73]. Data is gathered for healthy and faulty 

bearings. Data collection rate is 12000 point/second 

and rotor speed during each data acquisition is recorded 

to help us tracing fault frequencies. Experiments are 

conducted on a 2 HP IM. Bearing faults are created 

using electrical discharge machine (EDM). Faults are 

created on bearings three components and data 

collection is performed under 0 to 3 HP loads with 

corresponding 1797 to 1720 RPM speeds. Deep grove 

ball bearing SKF 6205-2RS JEM is used. For full 

information about bearing specifications and generally 

test rig visit [74]. 

Vibration data is gathered using accelerometers 

which are placed on the bearing’s housings by their 

magnetic plates. Accelerometers are placed on 12 

O’clock position at both fan and end bearings. Data is 

collected using a 16 channel DAT and preprocessed in 

MATLAB environment. 

6.  Results and discussion 

Figures show that often we see the same trends but 

some little or big differences also exist. However, our 

reference is our case study. Comparing studied case 

trends to practical case one, if they are almost the same, 

your decision will be faulty case. Results for inner race 

fault are shown in figures 7.a, b, c and d for 0, 1, 2, 

3HP loads respectively. It is obvious that mean feature 

can be a good indicator of existence of fault. With load 

increasement, detectability also increases because 

faulty and healthy cases become more separated.  

a 

 

b 

 

c 

 

d 

 

Figure 7. Mean feature for inner race fault: a) no load, b) 

1HP, c) 2HP, d) 3HP 

In case of standard deviations which are shown for 

inner race fault in figures 8.a b, c and d corresponding 

to 0, 1, 2, 3HP loads, results are different to some 

extent. For original signal, result has a different trend 

and this difference increases with loading such that for 

3HP faulty and healthy cases have about 0.2 difference 

even though, it is about 0.02 for no load condition. On 
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the other hand levels after 8
th
 level, don’t show obvious 

difference and these differences decrease with loading 

such that for 3HP, 7
th
 level also become unreliable. So 

attention must be paid if we want to use this feature as 

a fault indicator. With load increasement, standard 

deviation become a more powerful feature for original 

signal although detectability of other levels decrease 

gradually. Another important point here is that we can 

define a threshold for mean features but it is not 

possible to define a constant threshold for standard 

deviation. 

a 

 

b 

 

c 

 

d 

 

Figure 8. Standard deviation for inner race fault: a) no 

load, b) 1HP, c) 2HP, d) 3HP 

 

Results for ball defect are shown in figures 9.a, b, c 

and d for mean and in figures 10.a, b, c and d for 

standard deviation according to 0, 1, 2 and 3HP loads 

respectively. Results are almost the same which is the 

most important point here. Our proposed method is 

independent of bearing fault type and responds 

significantly to any type of bearing faults. Moreover, it 

is independent of bearing or motor specifications so it 

can be a reliable and precise method. 

 

a 

 

b 

 

c 

 

d 

 

Figure 9. Mean feature for ball defect: a) no load, b) 1HP, c) 

2HP, d) 3HP 

However, choosing threshold, variation limits for 

both mean and standard deviation and importance 

factor which we specify to each decomposition stage, 

can be arranged according to the special case and 

desired precision we are looking for. For instance, one 

can choose variation band so small, as a result there is 

little inclusion possibility of practical data in the band 

or on the contrary, choosing wide band leads to 

increasement of wrongly detected faults so there will 

be lesser precision. 
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a 

 

b 

 

c 

 

d 

 
Figure 10. Standard deviation for ball defect: a) no load, b) 

1HP, c) 2HP, d) 3HP 

On the other hand, it is possible to limit 

comparisons to some worthy stages or even specify 

bigger importance factors to some fault information 

opulent stages. Here the same importance factors for all 

the stages are chosen.   

7.  Improvement of fault detection precision in 

practical industrial applications 

Still there is a question about expandability of 

proposed method. Often, in specific industries, power 

range and specifications of operating electrical motors 

are almost the same. For example in railway industry, it 

is expected to see almost the same electrical motors in 

rolling stocks related to a specific line. So it is possible 

to utilize from experimental results related to a 

resemble motor and expand them to the other motors. 

But still there is a question which is how one can 

confirm experimental results to the practical cases? 

For this purpose, suggestion is the following 

approach: by placing temperature sensor, one can get 

housing temperature. In addition, it is also required to 

record motor power factor during the test. After 

comparing to the industrial case, it is feasible to 

represent these three conclusions: 1. if comparing test 

decomposition stages to practical case, says there exists 

fault and observed temperature and power factor are 

also the same, so one can say that bearing fault has 

happened. 2. If the comparison of tested and practical 

cases shows faulty condition but, power factor and 

temperature are not the same and are far apart, we have 

two situations: a) Fault has happened but it is not the 

bearing fault. b) Bearing fault and another kind of 

fault(s) have happened simultaneously. 3. If there is no 

agreement between tested and practical results, no 

faults has happened. Appling this approach leads to 

detection precision increasement. However, it is 

evident that, if motor specifications change drastically, 

validity of this approach will be under question.  

8.  Conclusions 

There are some deficiencies in conducted studies 

related to mechanical faults which are expressed here in 

detail. Among them, the most important one could be 

lack of a comprehensive method to investigate bearing 

faults. The proposed method is a comprehensive 

method to investigate bearing faults such that, it is 

independent of motor and bearing specifications and 

responds well to different kinds of bearing defects. 

Experimental results have been validating this claim. 

Vibration signal is decomposed into some segments, 

using wavelet, to enhance precision. Then statistical 

features including mean and standard deviation are 

utilized to show existence of fault. After that, a method 

for improvement of detection precision presented 

which is based on comparing power factor and 

temperature of tested and industrial application cases. It 

is suggested to use other mother wavelet functions such 

as morphological functions to increase future works 

detectability and reliability.   
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