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A B S T R A C T 

A simply supported Timoshenko beam with an intermediate backlash is considered. The beam equations of 
motion are obtained based on the Timoshenko beam theory by including the dynamic effect of a moving 
mass travelling along the vibrating path. The equations of motion are discretized by using the assumed modes 
technique and solved using the Runge–Kutta method. The analysis methods employed in this study are the 
dynamic trajectories of the beam midpoint, power spectra, Poincare´ maps, bifurcation diagrams and 
Lyapunov exponents. The dimensionless backlash gap coefficient and the moving mass speed are used as 
control parameters. The numerical results reveal that the system exhibits a diverse range of periodic, sub-
harmonic, and chaotic behaviors. The onset of chaotic motion is identified from the phase diagrams, power 
spectra, Poincaré maps, and Lyapunov exponents of the system. Therefore, the main aim of this study is to 
provide a better understanding of the characteristics and dynamic behaviors of the beams subjected to 
moving masses. 
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1. Introduction 

The effect of moving loads and masses on structures 
and machines is an important problem both in the field 
of transportation and in the design of machining 
processes. A moving mass (or moving load) produces 
larger deflections and higher stresses than does an 
equivalent load applied statically. These deflections 
and stresses are functions of both time and speed of the 
moving loads. 

For more than a century, the analysis of continuous 
elastic systems subjected to moving masses has been 
the subject of interest in many diverse fields such as 
civil and aerospace engineering [1]. Historically, the 
problem first arose in the design of railway bridges, 
and later in other transportation engineering problems 
such as the design of bridges, guideways, overhead 

cranes, cableways, rails, roadways, runways, tunnels 
and pipelines with moving masses [2].  

Recent investigations include the work of Chen [3], 
who showed how a general finite element code may be 
used to efficiently model bridge superstructures (such 
as I-shaped girders) under the variable moving load. 
Wu and Thompson [4] studied the non-linear properties 
of railroad track foundations under a single moving 
wheel load. Todd and Vohra [5] presented a theoretical 
approach to reconstruct the beam shape under static or 
moving load from strain measurements at a number of 
locations along beam length and taking shear 
deformation into account. The method was successfully 
applied to a two-span beam under a static load, and a 
simply supported beam under a moving load. A more 
recent book by Fryba [6] includes analyses of moving 
masses on a beam under different loading conditions. 
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Akin and Mofid [7-8] developed the so-called discrete 
element technique (DET) for the vibration analysis of 
Euler-Bernoulli beams subjected to a concentrated 
moving mass. Younesian et al. [9] presented a 
generalized technique for the moving load problem. 
They studied the vibration response of a Timoshenko 
beam supported by a viscoelastic foundation with 
randomly distributed parameters along the beam length 
and subjected to a harmonic moving load. The method 
they presented was based on measurements gathered by 
a moving vehicle, which is of significant engineering 
importance. Yavari et al. [10] extended the work of 
Mofid to a case with lumped masses and Timoshenko 
beams, i.e. they were able to consider the effect of 
shear deformation and rotary inertia and Ziaei et al. 
[11] studied a Timoshenko beam under uniform 
partially distributed moving masses. 

In the last decade, chaos has become a focal point 
for non-linear problems in subjects ranging from 
physics and chemistry to biology and economics [12–
16]. Most mechanical systems are non-linear in nature, 
and can be described by the non-linear equations of 
motion. It has been realized that the responses of many 
non-linear dynamical systems do not follow simple, 
regular or predictable trajectories. A large number of 
studies have shown that chaotic phenomena may occur 
in many non-linear dynamical systems [17–23].  

In vibrations of continuous systems, types of 
support conditions are important and have direct effect 
on the solutions and natural frequencies. In real system 
applications, usually the support type that best 
resembles the behavior is selected. However, the real 
system behavior may deviate from the idealized 
support conditions. For example, if the beam is simply 
supported, the ideal conditions require deflections and 
moments to be zero at the supports. In reality, however, 
small deviations from the ideal conditions indeed 
occur. On the other hand, the hole and pin assembly 
may have small gaps and/or friction which may 
introduce small deflections and/or moments at its ends. 
To represent such behaviour, a non-ideal boundary 
condition concept has been recently proposed [24–26]. 
Pakdemirli and Boyaci [24] studied linear beam 
problems of different support conditions and an axially 
moving string problem. They also investigated a non-
linear beam problem with stretching [25]. Finally, they 
considered the forced damped case with a non-ideal 
simple support at an intermediate point and contracted 
ideal and non-ideal frequencies [26]. Lin and Ewins 
[27] presented detailed numerical and experimental 
studies on the chaotic dynamic behavior on nonlinear 

mechanical systems with backlash. Such systems arise 
in engineering structures in which components make 
intermittent contact due to the existence of clearance.  

The main purpose of this article is to analyze the 
chaotic response of a Timoshenko beam subjected to 
moving masses with a non-ideal support in between. 
The support is modeled as a backlash. It is considered 
that a new mass enters the beam domain from the left 
as soon as the old one exits it from the right, the 
process then being repeated for an arbitrary number. 
First, an analytical formulation is presented for simply 
supported beam subjected to moving masses. The 
equations of motion are discretized by using the 
assumed modes technique and solved using the fourth 
Runge–Kutta method. Next, by considering the non-
ideal support of the midpoint of the beam, the critical 
values for the control parameters, i.e. the dimensionless 
gap coefficient and the moving mass speed, are 
detected by the bifurcation diagram. Finally, the 
behavior of the system (in some critical values of the 
control parameter) is presented by time history, phase 
plane, Poincare maps, power spectrum and Lyapunov 
Exponents. 

2. Problem formulation 
1. Governing equations of a Timoshenko beam under a 
moving mass 

A simply supported Timoshenko beam of length L 
with a backlash support in between is considered as in 
Figure 1. 
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Figure 1: A beam with non-ideal support in between 
subjected to moving masses 

For modeling of this problem, the stiffness of the 
support is represented by a linear spring (Figure 2). By 
using Timoshenko beam theory, the equation of motion 
for each segment, assumed to have uniform cross 
section, is [28]. 
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where Y and Φ are deflection and rotation of the beam, 
respectively. Also, ρ is the beam's volumetric density, I 
is the cross-sectional moment of inertia, A is the cross 
sectional area, E is Young’s modulus of elasticity, G is 
the shear modulus, and κ is the shear correction factor 
in Timoshenko beam theory which is a function of the 
cross-section and the Poisson ratio υ [29]. The terms 

)(TX  and 
sLX  denote the Dirac delta 

function which ξ and Ls define the moving mass and 
backlash support locations, respectively. 
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Figure 2: Non-ideal support in between 

is replaced by a linear spring 

The expression for P(T) depends on the analytical 
model used to represent the moving load. In the case of 
the moving mass, it is modeled by the following 
relation  𝑃(𝑇) = 𝑀൛𝑔 − ᴧ[𝑌(𝑋, 𝑇)]ୀక(்)ൟ (2) 

where M is the moving mass, g is the acceleration due 
to gravity, and Λ[•] is a linear differential operator that 
takes into account the acceleration of the moving mass 
[30] 

 
(3) 

In this expression  and  are the speed and 
translational acceleration of the moving mass, 
respectively. Also, the term  

TX

Y2

2
  is derived from 

Coriolis force and plays the role of damping. However, 
the term 

2

2
2

X

Y , which is derived from centrifugal 

force (normal to the beam), plays the role of weakening 
the bending stiffness of the system. Also, the terms 

2
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X

Y  are from inertia force and the 

force derived from moving mass translational 
acceleration, respectively. Moreover, f(T) is the force 
exerted by the non-ideal support where its magnitude is 
defined as 
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In the above equation, ka is the stiffness of the linear 
spring, δm is the deflection of the beam in the non-ideal 
support location and δcr is the distant between the beam 
and the non-ideal support at rest.  

From Eq. (2) it is apparent that the interaction force 
depends on the beam response itself. The boundary 
conditions of the simply supported beam are 
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0)T,L()T,L(Y  (5b) 

By introducing the following quantities to the 
previous equations: 
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Thus, for each segment, Eq. (1a, b) can then be 
expressed as 

s
lx

L

tf
tx

L

tP

xx

y

L

AG

t

y
A

)(
)(

)(

2

2

2

2
 

(7a) 

0
2

2

22

2

3 tL

I

x

y

L

AG

xL

EI  (7b) 

where 

)(
,)(

tx
txygMtP  (8a) 

xxtxt 2

2
2

2
2

2

2  (8b) 

In the above equation, Γ  is the non-dimensional 
of Λ  and is equal to ΛL . 

2.Eigenvalues and eigenfunctions of the simply 
supported Timoshenko beam 

The eigensolutions of the beam are derived letting 
the forcing term, )(txtP  and

slxtf , to be 
zero. The solutions for the other boundary conditions 
can also be obtained through similar procedures. Using 
some rearrangement and the separable solutions: 

tiexwtxy )(),(  and tiextx )(),(  in Eq. (7a, b) 
leads to an associated eigenvalue problem [28]: 
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0)()()()()( xxxiv  (9b) 

where 

 
(10) 

A closed-form solution to this eigenvalue problem 
can be obtained by employing the transfer matrix 
method [28, 31]. The general solutions of Eqs. (9a, b), 
for each segment, are [28] 
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For case of a simply supported beam, the 
corresponding boundary conditions of Eqs. (5a, b) can 
thus be expressed as 

 (13a) 

0000 )(,TΦ  (13b) 

Satisfying the above boundary conditions at the 
beam left support leads to 

0CA  (14) 

By satisfying the boundary conditions at the right 
support, one can be obtained that 
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Substitution of Eq. (14) into Eq. (15) leads to 
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Therefore, the existence of non-trivial solutions 
requires 

0
sinsinh
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222111
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This determinant provides the single equation for 
the solution of eigenvalue ω. This is a matrix of only 
2×2 dimensions, therefore, it is a simpler process to 
obtain the corresponding characteristic equation. The 
coefficients of the eigenfunctions, w(x) and φ(x) are 
obtained by back substitution into Eqs. (17) and (11). 

3. Forced response 

The original equation of motion, Eqs. (7a, b), is 
rewritten here: 
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Using the modal expansion theory, the forced 
response y(x,t) and ),( tx of this system can be 
expressed as 

 
(20a) 

 
(20b) 

where pk(t) are the generalized coordinates (time 
functions) for the elastic deflection and orientation of 
the beam element. The functions wk(x) and φk(x) are the 
respective transverse and rotational eigenfunctions 
(modal shapes) of a Timoshenko beam. The use of 
same time functions, pk(t), in the Galerkin 
approximation is a common practice and the standard 
assumption that has been utilized by many researchers 
in other areas of mechanics. In reference [32], two 
different time functions were used for y(x,t) and ),( tx , 
respectively. The results showed that the difference in 
obtained solutions is small and concluded that 
assuming the same time functions for both variables 
y(x,t) and ),( tx is reasonable. Substituting Eqs. (20a, b) 
into Eqs. (19a, b), yields 
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On the other hand, from the free vibration analysis 
we have 
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where ωk is the kth natural frequency of the beam. 
Substituting Eqs. (22a, b) into Eqs. (21a, b) results in 
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In order to solve for pk(t) from Eqs. (23a, b), the 
orthogonality conditions [32] of 

1 
0 )()(

2
)()(

ij
dxx

j
x

iAL

I
x

j
wx

i
w  (24) 

are utilized, where i, j =1,2,…, N and δij is the 
Kronecker delta. Multiplying Eq. (23a) by wk(x) and 
Eq. (23b) by φk(x), adding each side together, 
integrating over the entire length of the beam, and with 
the use of the orthogonality relationship (24), we get 
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Again, here wk(x) are eigenfunctions of the cracked 
beam system. Using Eqs. (20) and (8b) in Eq. (8a), the 
beam-moving mass interaction force is rewritten as  

N

k
k

p
k

w
k

w
k

p
k

w
k

p
k

wgMtP
1

22)(

 
(26) 

where the prime denotes differentiation with respect to 
x. 

The right-hand side of Eqs. (25) depends on the 
function P(t) which, in turn, depends on the 

coefficients pk(t) (Eq. (26)). It is clear, then, that Eqs. 
(25) are a set of coupled second order linear differential 
equations that can be solved by different techniques 
such as those mentioned in references [30] and [33]. 

After determining pk(t) from Eq. (25) and by using 
of known initial conditions, the forced response 
solutions y(x,t) and ),( tx can then be reconstructed 
from Eqs. (20a, b). In order to simplify the program 
implementation, let us introduce the following 
functions [30] 
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kpk

)(
, )(          Nk ,...,2,1  (27)  

Also, for extraction of the steady state response, the 
following equation is used instead of equation (25) 
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where rk is defined as the viscous damping of the kth 
mode. Using the Eq. (28) the transient response can be 
neglected and it is reasonable to assume that only the 
steady state response remains after a short period of 
time. Finally, by using the method described in [30] 
and by adding the effect of damping, a compact matrix 
form is obtained as    

tMgVtptKtptDtptM 0
 (29) 

where p(t) is an n-dimensional vector collecting the 
unknowns pr(t), Vp(x) = [υ1,p(x), υ2,p(x), …, υN,p(x)]T and 
the system matrices are given by 
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Now, the following definition is considered 
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The initial conditions associated with Eq. (29) are 
written as 
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The set of Eq. (29) can be solved using a different 
number of numerical integration schemes. The solution 
procedure presented has been implemented in Matlab 
code. Once the vector p(t) has been obtained, one can 
calculate the beam response according to the 
expressions 
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Finally, if the following terms are inserted into Eq. 
(29) for the mass, damping and stiffness matrices 
respectively, the governing equations for the special 
case of a moving force problem will be obtained. 

NItM  (35a) 
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3. Results and discussions 

A simply supported beam (Figure 3) with the 
following characteristics is considered where a non-
ideal backlash support is located in the middle of the 
beam. Unless stated otherwise, all numerical results 
presented in this section are based on the following 
numerical data: 

L=50 m, E=2.0×1011 N.m-2, I=0.0417 m4, m=3930 kg.m-1, 
M=39300 kg, A=0.5 m2, δcr=0.8 δst, v=100 m.s-1, g=9.81 m.s-2, 
LS/L=0.5, height=1.0 m, width=0.5m, r1=r2=0.1. 

in which δst is the static deflection due to the 
moving mass M at mid-span and is equal to 

EIMgL 48/3 . In this study, a new mass is assumed to 
enter the beam domain from the left as soon as the old 
one exits it from the right, the process being repeated 
for an arbitrary number. For the next step, it is now 
required to consider the state variables at the end of 
each moving mass traveling as initial conditions. 

Here, five methods are applied to analyze the 
dynamical system: the dynamic trajectories, power 

spectra, Poincare  ́ maps, Lyapunov exponent and 
bifurcation diagrams. These properties are all used 
together to determine more accurately the onset 
conditions for the chaotic motion. The dynamic orbit 
can only be used to distinguish whether the system is 
periodic or non-periodic and it cannot provide enough 
information to predict the onset for the chaotic motion. 
Therefore, the usage of other analytical methods is 
necessary. The Poincare  ́ section is a hyper-surface in 
the state space transverse to the flow of a given system. 
In non-autonomous systems, points on the Poincare  ́
section represent the return points of the time series at 
a constant interval T, where T is the driving period of 
the exciting force that is here the time for one 
travelling of the moving mass along the beam. For 
chaotic motion, the return points in the Poincare  ́ map 
form a particular pattern or many irregular points. For 
nT-periodic motion, the return points in the Poincare  ́
map include n discrete points. A bifurcation diagram 
provides a summary of the essential dynamics of the 
system and is therefore a useful way for observing the 
system non-linear dynamic behaviour. There are many 
publications on nonlinear dynamic systems and 
methods used to analyze them. For the sake of brevity, 
we do not explain them in this paper and instead refer 
the interested readers to references [34-36]. To 
generate a bifurcation diagram, one control parameter 
is varied with a constant step and the state variables at 
the end of one integration step are used as the initial 
values for the next step. 

The gap ratio, s, that is defined as the ratio between 
δcr and δst is used as the first control parameter. The 
value of it varies from zero, for an ideal support, to 1.2 
in Figures 3 and 4. These figures are the bifurcation 
diagrams of the beam center with a non-ideal support 
where the gap ratio is considered as the control 
parameter. The bifurcation diagram for the case of 
moving mass formulation is considered in Figure 3 
while Figure 4 indicates the bifurcation diagram for the 
case of moving forces instead of moving masses. For 
the moving force formulation, the terms due to the 
Coriolis, centrifugal, and inertia [Eq. (8a, 8b)] forces 
are neglected. The simulation results in Figure 3 show 
that the vibration amplitude of the beam center has its 
lowest value when the gap ratio is either zero, or very 
small. The dynamic responses for small gap ratio are 
synchronous with period-one. It proves that for zero or 
low values of the gap, i.e. the backlash is zero or 
negligible, the system often keeps regular vibration or 
periodic vibration because of the small nonlinearity. 
The amplitude becomes gradually larger as the gap 
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ratio increases. The largest amplitude for a periodic 
response occurs at s = 1.06 with a normalized 
amplitude of 1.22. An interesting result is also found 
for beam responses at s = 0.129, 0.286 and 1.22: the so-
called “jump phenomenon”. Also, over the range s = 
0.672 ~ 0.838 the chaotic motion was observed. 

 
Figure 3: Bifurcation diagram of the beam center for the 

case of the moving mass formulation when the gap ratio is 
used as the control parameter 

 
Figure 4: Bifurcation diagram of the beam center for 

the case of the moving force formulation when the gap 
ratio is used as the control parameter 

Figure 4 shows a different scenario for the case of 
moving load formulation. In this figure, the 
nonlinear terms related to the moving mass 
formulation have been neglected. The chaotic 
motions have not been observed in the studied range 
of parameters. This difference between two 
diagrams (i.e. Figures 3, 4) is due to the effects of 
the moving mass which together with the nonlinear 
support terms lead to more severe nonlinear motion 
of the system as shown in Figure 3. 

One may use the gap ratio, s as a control 
parameter by reversing it. If s decreases from a 
value to zero, a different bifurcation diagram may 
be obtained. Figure 5a,b shows the bifurcation 

diagrams when s increases and then decreases for 
the case of moving mass and moving force, 
respectively. Closed loops due to nonlinear support 
are seen in this figure, created around the points 
where jump phenomena have occurred. These 
loops imply that more than one stable solution 
exists for some values of the gap ratio. In this 
figure, the dash lines indicate the jumping 
phenomena. 

(a) 

 

(b) 

 
Figure 5: Bifurcation diagram of the beam center 

when the gap ratio as the control parameter, increases and 
then decreases: (a) Case of the moving mass; (b) Case of 

the moving force 

Figure 6 is the bifurcation diagram of the beam 
center when the velocity is used as a control 
parameter. In this figure, x-axis represents the 
normalized velocity of the moving mass, Ṽ, which 
has been normalized with respect to the critical 
velocity for a simply supported Euler-Bernoulli 
beam that is defined as [6] 

L
V cr

1

 
(36) 
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where ω1
 is  

2

1 Lm

EI

 (37) 

In Figure 6, the chaotic motion is shown over the 
ranges Ṽ = 0.338 ~ 0.543, 0.650 ~ 1.165 and 1.182 
~ 1.198. A process of period doubling bifurcation 
is observed over the ranges Ṽ = 0 ~ 0.337, 0.544 ~ 
0.649, 1.166 ~ 1.181 and 1.199 ~ 1.5. 

Figures 7–24 represent the time histories, phase 
diagrams, Poincare  ́ maps, power spectrums and 
Lyapunov exponents of the beam center for the 
moving mass formulation at s = 0.0, 0.450, 0.640, 
0.720, 0.770, 0.805, 0.850, 0.950 and 1.150, 
respectively. The results of the diagrams show that 
the dynamic response of the beam center is 1T-
periodic motion at s = 0.0, 0.450 and 1.150. At s = 
0.640 and 0.950, the system becomes 2T and at s = 
0.850, the system becomes 4T-periodic motions, 
correspondingly. If at least one of the values of 
Lyapunov exponents is positive, the chaotic 

phenomena will occur [36]. Considering three 
modes, six Lyapunov exponents are obtained. At 
values of s = 0.720, 0.770 and 0.805 (Figures 13–
18) the dynamic trajectories are unstable and the 
number of excited frequencies becomes numerous. 
Periodic motion is no longer in existence at these 
values. Many discrete points in the Poincare  ́ maps 
and positive values of at least one of the Lyapunov 
exponents also indicate that the system motion is 
chaotic [34-36]. From these results, it can be seen 
that the moving mass-beam system undergoes a 
process of period doubling bifurcation as the gap 
ratio is increased over the range s = 0.581 ~ 0.672 
and also undergoes a sudden transformation into 
chaos as the gap ratio is increased over the range s = 
0.672 ~ 0.838. At higher values of the gap ratio, the 
dynamic behavior of the beam is found to be 4T -
periodic at s = 0.850, 2T - periodic at s = 0.95 and 
1T-periodic for s > 1.15. 

 

 
Figure 6: Bifurcation diagram of the beam center for the case of the moving mass formulation 

when the normalized moving mass velocity is used as the control parameter: Ṽ = 0 ~ 1.5 

 

Figure 7: The time history, phase plane portrait, 
Poincaré map and power spectrum at s = 0 
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Figure 8: Lyapunov exponents at s = 0 

 

Figure 9: The time history, phase plane portrait, 
Poincaré map and power spectrum at s = 0.450 

 

Figure 10: Lyapunov exponents at s = 0.450 

 

Figure 11: The time history, phase plane portrait, 
Poincaré map and power spectrum at s = 0.640 
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Figure 12: Lyapunov exponents at s = 0.640 

 

Figure 13: The time history, phase plane portrait, 
Poincaré map and power spectrum at s = 0.720 

 
Figure 14: Lyapunov exponents at s = 0.720 

 

Figure 15: The time history, phase plane portrait, 
Poincaré map and power spectrum at s = 0.770 
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Figure 16: Lyapunov exponents at s = 0.770 

 

Figure 17: The time history, phase plane portrait, 
Poincaré map and power spectrum at s = 0.805 

 
Figure 18: Lyapunov exponents at s = 0.805 

 

Figure 19: The time history, phase plane portrait, 
Poincaré map and power spectrum at s = 0.850 
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Figure 20: Lyapunov exponents at s = 0.850 

 

Figure 21: The time history, phase plane portrait, 
Poincaré map and power spectrum at s = 0.950 

 
Figure 22: Lyapunov exponents at s = 0.950 

 

Figure 23: The time history, phase plane portrait, 
Poincaré map and power spectrum at s = 1.150 
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Figure 24: Lyapunov exponents at s = 1.150 

Table 1: Lyapunov exponents and state of the system 

s λ1 λ2 λ3 λ4 λ5 λ6 State 

0 -4.1007 -4.1290 -14.4704 -14.5261 -26.7943 -32.5196 Period-1 

0.450 -3.9612 -3.9845 -14.6767 -15.7236 -30.7618 -32.0227 Period-1 
0.640 -7.5735 -7.7538 -8.5453 -14.0066 -32.2534 -32.8352 Period-2 
0.720 4.3757 -12.4073 -14.6602 -14.8921 -16.0165 -32.2401 Chaos 
0.770 5.0356 -13.2619 -14.4394 -15.0741 -15.8736 -32.2205 Chaos 
0.805 3.9225 -11.8333 -14.7464 -15.2232 -17.3539 -32.1815 Chaos 
0.850 -2.3892 -10.7265 -12.1586 -12.2478 -26.1793 -32.3806 Period-4 
0.950 -5.0740 -5.2386 -13.5790 -13.6093 -32.3201 -32.3304 Period-2 
1.150 -3.5340 -3.5712 -15.3643 -15.3943 -26.3204 -32.2095 Period-1 

 
Table 1 shows the values of the Lyapunov 

exponents and the state of the system. According to 
Table 1, chaos phenomena does not occur for s= 0, 
0.450, 0.640, 0.850, 0.950 and 1.150, however, for the 
values of s = 0.720, 0.770 and 0.805, chaos can be 
observed. 

 

4. Conclusions  

A simply supported Timoshenko beam with an 
intermediate non-ideal support subjected to a 
moving mass was considered. The analysis was 
employed in this study by calculating the dynamic 
trajectories of the beam center, power spectra, 
Poincare  ́maps, bifurcation diagrams and Lyapunov 
exponents. The dimensionless gap coefficient and 
the moving mass speed are used as control 
parameters. The numerical results reveal that the 
system exhibits a diverse range of periodic, sub-
harmonic, and chaotic behaviors. The onset of 
chaotic motion is identified from the phase 
diagrams, power spectra, Poincaré maps and 
Lyapunov exponents of the system.  

Furthermore, it is concluded that in this case when 
the terms due to the moving mass were neglected, 
the chaotic motion was not observed in the 
bifurcation diagram. It is also seen that if the gap 
ratio, s, increases and then decreases, two different 
bifurcation diagrams may be predicted. Created 
closed loops imply that more than one stable 
solution exists for some values of the gap ratio. 
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