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1.  Introduction 

Hyperloop is an ultra-high-speed cargo or 

passenger transportation system. This system 

was fisrt introduced by Elon Musk at the end of 

the year 2013 [1]. This system works based on 

moving a very high-speed capsule-shaped 

vehicle called the “pod” into the low-air pressure 

tubes. There are two different separate 

technologies for levitating the pod. The first is 

magnetic levitation, and the second is air cushion 

suspension. The systems with air cushions are 

equipped with an axial compressor in front of the 

pod. Magnetic levitation itself is divided into 

three different types. They are Electro-Magnetic 

Suspension (EMS), Electro-Dynamic 

Suspension (EDS), and Inductrack systems. 

EMS vehicles work based on the attraction force 

between the vehicle and guideway magnets. 

Vice versa, in EDS systems, the train is levitated 

by the repulsive force of the vehicle and 

guideway magnets[2]. Inductrack is a passive, 

fail-safe EDS system, using only unpowered 
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Hyperloop Transportation Technology (HTT) is a worldwide invention 

proposed by Elon Musk in the last decade. This system works based on 

moving an ultra-high-speed capsule-shaped vehicle called a “pod” into 

low-air pressure tubes. In this paper, we conceptually designed a large-

sized industrial pod equipped with an axial compressor. Also, we 

considered an unbalanced centrifugal force on the compressor blades. The 

novel-designed pod has two suspensions simultaneously, including 

magnetic levitation (EMS kind) and air cushion technology. We applied 

the air cushions to overcome the overall weight of the pod. Also, we used 

magnets for the motion stability of the pod. The present study proposes a 

5-DOF dynamic model for the system containing the pod’s vertical and 

lateral displacements and the body pitching, rolling, and yawing angles. In 

this regard, the natural frequencies are verified using simulating the system 

in ADAMS software. Afterward, we analytically calculated the natural 

frequencies and system responses by applying the impedance matrix 

method. In the numerical results, we analyzed the pod responses, when the 

resonance phenomenon occurs for undamped and damping cases. Results 

showed oscillations increased by increasing the unbalancing parameter. 

We finally investigated the effect of two main design parameters 

containing the pod’s total mass and stiffness of the air cushions on the 

natural frequencies. Increasing the air cushion’s stiffness and decreasing 

the total mass generally increase the natural frequencies. 
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loops of wire in the guideway and the body 

magnets with Halbach arrays [3]. 

Some researchers tried to present an 

appropriate dynamic model for the hyperloop 

system, high-speed maglev trains, and air 

cushion vehicles. 

Pradhan and Katyayan [4] experimentally 

designed a small-sized pod called “Orcapod” for 

the Hyperloop world competitions. Then, they 

proposed a four Degree-Of-Freedom (DOF) 

dynamic model for the pod. Their model was a 

half-vehicle model with two pairs of flexible 

EDS (inductrack) permanent magnets at the 

front and rear of the pod. They obtained the 

system's natural frequencies and determined the 

pod vibrational mode shapes. Madhan et al. [5] 

designed a small-sized wheeled pod equipped 

with six angular magnetic modules. Then, they 

analyzed the pod vibrations as a 9-DOF model 

containing the vertical displacements of the body 

and modules, as well as the body pitching and 

rolling angles. They used Simulink MATLAB 

software and Newmark numerical method to 

solve the model. They also investigated the 

effects of acceleration and braking on the 

system's vibrational behavior. 

Paval et al. [6] simulated the airflow inside 

the air cushion cavity of a hovercraft system with 

an elliptic shape using Ansys Fluent software. In 

their model, the air gap between the cushion and 

the ground and air velocity were the input 

parameters. They calculated the cushion lift 

force, static pressure, and mass flow rate in 

different gaps and air velocities. They also 

designed and investigated other models for air 

cushions with different shapes and 

suspensions[7-9]. 

Wu et al. [10] analyzed the coupling 

vibrations of the vehicle guideway for a high-

speed train. They investigated the effect of inner 

loop current gain coefficient, time lag, and 

levitation current perturbation on the static 

stability of the vertical suspensions for the 

maglev vehicle using the full-vehicle model with 

five EMS frames. The model included the 

vertical displacement, pitching, and rolling 

angles for the body and frames (without lateral 

displacement or guidance forces effects). They 

used the double loop control principle to 

suppress the vehicle and guideway vibrations. 

Wang et al. [11] presented fuzzy Proportional–

Integral–Derivative (PID) control for reducing 

the dynamic oscillations of a high-speed maglev 

train-bridge interaction. They used a half-vehicle 

model with four EMS frames interacting with a 

bridge as the simply-supported beam model.  

Using an air compressor for the hyperloop 

system has many advantages, including air 

suction and helping to reduce the drag force of 

the air inside the tube to the pod, providing the 

compressed air needed by the air cushions, 

providing the oxygen required for passengers 

through the air storage tanks, and also helping to 

propel the pod forward. But the presence of an 

air compressor in front of the pod can be a factor 

in destabilizing the pod's movement. We 

describe this issue in detail in the paper.  

As it is clear, in the design of mechanical 

systems, it is never possible to accurately make 

the components of the designed parts 

symmetrical and balanced in terms of mass 

distribution in all segments of the part 

production. There is always a small percentage 

of error due to mass imbalance. Especially in the 

case of mechanical rotating systems, this 

phenomenon becomes more visible and 

effective. Therefore, this phenomenon is not far 

from expected in the case of the air compressor, 

which consists of air suction turbine blades.   

A group of researchers investigated dealing 

with this issue with various compressors and 

vehicles with different approaches. They also 

described how this phenomenon affects the 

system’s performance. Seve et al. [12-14] 

investigated the balancing of a variable-speed 

rotary compressor with experimental and 

numerical methods. They used the Finite 

Element (FE) model, based on the rotor 

dynamics theory in connection with the 

Influence Coefficient Method (ICM). They 

compared numerical and experimental 

unbalance responses obtained with different 

balancing criteria. The proposed balancing 

method satisfies both the vibration level 

minimization criterion and its industrial 

implementation. Ferraris et al. [15] studied the 

influence of cylinder pressure on the balancing 

of a rotary compressor. They expanded the 

cylinder pressure force into a Fourier series, 

evaluating the bearing characteristics, 

establishing the balancing, and predicting the 

compressor response. They used rotor dynamics, 

FE, and ICM to reduce the vibration levels of the 

rotor and stator parts of the compressor.  

Wang et al. [16] investigated the effect of 

dynamic unbalance of the underframe suspended 
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rotational equipment on the flexible vibrations of 

the car body of a high-speed train. They showed 

that underframe dynamic unbalance can affect 

car body vibrations, especially the local flexible 

vibration, which causes decrease in the 

passenger ride comfort and may even cause 

structural damage to the car body. They showed 

that decreasing the unbalanced mass of the 

rotational equipment can reduce car body 

vibrations. In addition, utilizing the elastic 

suspension as a Dynamic Vibration Absorber 

(DVA) for the underframe equipment can isolate 

the vibration transmission to the car body. 

Jitendra Kumar [17] designed a linear DVA for 

an unbalanced blower rotor (caused by a broken 

blade). He used the blower with the two-Degree-

Of-Freedom (2-DOF) model and studied two 

different strategies for the location of DVA. The 

results showed the positive effect of DVA on 

vibration response reduction of the blower. 

Zhang et al. [18] presented a numerical model to 

analyze the dynamic behaviors of the 

crankshafts in single-cylinder and twin-cylinder 

rotary compressors. They assumed the 

crankshaft centrifugal force as the unbalanced 

force generated by the crank part and roller. 

They used upper and lower balancers on the 

motor rotor to reduce this centrifugal force.  

Aziaka et al. [19] conceptually designed an 

axial compressor for a large industrial gas 

turbine. They mentioned that unbalancing is the 

main factor of vibrations in axial compressors 

and may damage bearings and seals in part of 

their research. Even in some conditions, it causes 

component failure or fatigue. Unbalancing 

occurs when the center of the mass is not located 

at the rotating center. They proposed balancing 

the system by putting the shaft on the knife edge. 

As mentioned earlier, the existence of an air 

compressor in front of the pod, despite its 

advantages, can be a factor in destabilizing the 

pod's movement. This problem results in an 

unbalanced force caused by the non-uniform 

distribution of mass in the asymmetric part 

applying as a disturbing external excitation force 

to the system. If the excitation frequency of this 

external force is equal to the natural frequency of 

the system, for the undamped system case, the 

resonance phenomenon occurs and causes 

instability. We investigated this issue in the 

present research in detail. Therefore, we first 

present a 5-DOF model for the pod. The 

proposed pod is equipped with both air cushions 

and EMS magnets simultaneously. We 

simulated the system in ADAMS software and 

verified the introduced model by comparing the 

natural frequencies obtained. Then, we studied 

the unbalanced force's effect on the vibration and 

instability of the pod using analytical and 

numerical methods. Also, we investigate the 

influence of the unbalancing parameter and 

damping of the air cushions on the vibration 

behavior of the pod for its related movements. 

Finally, we analyze the effect of two pod design 

parameters containing the total mass of the pod 

and stiffness of air cushions on the natural 

frequencies. 

 

2. Proposed Pod Modeling 

In this section, we present the proposed pod 

model briefly and usefully. This innovative 

conceptual model includes both air cushions and 

EMS levitations simultaneously. We used air 

cushions to overcome the overall weight, and 

EMS magnets are responsible for motion 

stability and accelerating the pod. Therefore, it is 

necessary to calculate the number of air cushions 

required to overcome the pod weight and 

suspend the system. But, first, we present the 

proposed pod dynamic model and derive 

governing equations. Then, we will describe our 

air cushions modeling and the related 

calculations in the next section concisely. 

 

2.1. Five DOF Pod Model 

In this section, the conceptual pod model is 

presented as follows: 
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Fig. 1: Proposed pod model with its components 

 

The system's technical specifications is 

provided in the Appendix section. The main 

dimensions of the pod are taken from Elon 

Musk’s report [1]. However, the dynamical 

properties of the pod are calculated using the 

"mass properties evaluation" command in 

SolidWorks. These parameters are the total 

weight of the pod, three mass moments of 

inertia, and the Center of Gravity (CG). All 

moments of inertia are considered relative to the 

CG position of the pod. The technical  

 

specifications of the EMS part are reported 

according to Min et al. [20] numerical data.  

Two pairs of frames are located at the front and 

rear of the pod that support the vertical and 

lateral magnets. As mentioned earlier, the air 

cushions are responsible for overcoming the 

overall weight, and EMS magnets are used for 

motion stability and accelerating the pod. Also, 

we utilized the lateral magnets for the pod lateral 

motion stability. In this regard, we derived the 

governing dynamic equations as follows: 

∑𝐹𝑍 =𝑚𝑧̈ 

𝑚𝑧̈ + ∑ 𝐾𝑎𝑟𝑖
(𝑧 ∓ 𝐿𝑖𝜃 + 𝑊𝜑)

10

𝑖=1

+ ∑𝐾𝑎𝑙𝑖
(𝑧 ∓ 𝐿𝑖𝜃 − 𝑊𝜑)

10

𝑖=1

+ ∑𝐶𝑎𝑟𝑖
(𝑧̇ ∓ 𝐿𝑖𝜃̇ + 𝑊𝜑̇)

10

𝑖=1

+ ∑𝐶𝑎𝑙𝑖
(𝑧̇ ∓ 𝐿𝑖𝜃̇ − 𝑊𝜑̇)

10

𝑖=1

 

+𝐾𝑧1(𝑧 − 𝐿𝑓𝜃 + 𝑎𝜑) + 𝐾𝑧2(𝑧 − 𝐿𝑓𝜃 − 𝑎𝜑) + 𝐾𝑧3(𝑧 + 𝐿𝑟𝜃 + 𝑎𝜑) + 𝐾𝑧4(𝑧 + 𝐿𝑟𝜃 − 𝑎𝜑) − ∑ 𝐾𝐼𝑗  𝐼𝑗

4

𝑗=1

= 0 
(1) 

∑𝐹𝑦 = 𝑚𝑦̈ 

𝑚𝑦̈ + ∑𝐾𝑦𝑗(𝑦 ± ℎ𝜑 + 𝐿𝑓𝜓)

2

𝑗=1

+ ∑𝐾𝑦𝑗(𝑦 ± ℎ𝜑 − 𝐿𝑟𝜓)

4

𝑗=3

+ ∑𝐾𝐼𝑦𝑗  𝐼𝑦𝑗

4

𝑗=1

= 0 
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∑𝑀𝐺 =𝐼𝑦𝑦𝜃̈ 

𝐼𝑦𝑦𝜃̈ ± ∑ 𝐾𝑎𝑟𝑖
𝐿𝑖(𝑧 ∓ 𝐿𝑖𝜃 + 𝑊𝜑)

10

𝑖=1

± ∑𝐾𝑎𝑙𝑖
𝐿𝑖(𝑧 ∓ 𝐿𝑖𝜃 − 𝑊𝜑)

10

𝑖=1

± ∑ 𝐶𝑎𝑟𝑖
𝐿𝑖(𝑧̇ ∓ 𝐿𝑖𝜃̇ + 𝑊𝜑̇)

10

𝑖=1

± ∑𝐶𝑎𝑙𝑖
𝐿𝑖(𝑧̇ ∓ 𝐿𝑖𝜃̇ − 𝑊𝜑̇)

10

𝑖=1

− 𝐾𝑧1𝐿𝑓(𝑧 − 𝐿𝑓𝜃 + 𝑎𝜑) − 𝐾𝑧2𝐿𝑓(𝑧 − 𝐿𝑓𝜃 − 𝑎𝜑)

+ 𝐾𝑧3𝐿𝑟(𝑧 + 𝐿𝑟𝜃 + 𝑎𝜑) + 𝐾𝑧4𝐿𝑟(𝑧 + 𝐿𝑟𝜃 − 𝑎𝜑) + ∑ 𝐾𝐼𝑗  𝐼𝑗𝐿𝑓

2

𝑗=1

− ∑ 𝐾𝐼𝑗  𝐼𝑗𝐿𝑟

4

𝑗=3

= 0 

∑𝑀𝐺 =𝐼𝑥𝑥𝜑̈ 

𝐼𝑥𝑥𝜑̈ + ∑𝐾𝑎𝑟𝑖
𝑊(𝑧 ∓ 𝐿𝑖𝜃 + 𝑊𝜑)

10

𝑖=1

− ∑𝐾𝑎𝑙𝑖
𝑊(𝑧 ∓ 𝐿𝑖𝜃 − 𝑊𝜑)

10

𝑖=1

+ ∑ 𝐶𝑎𝑟𝑖
𝑊(𝑧̇ ∓ 𝐿𝑖𝜃̇ + 𝑊𝜑̇)

10

𝑖=1

− 

∑𝐶𝑎𝑙𝑖
𝑊(𝑧̇ ∓ 𝐿𝑖𝜃̇ − 𝑊𝜑̇)

10

𝑖=1

+ 𝐾𝑧1𝑎(𝑧 − 𝐿𝑓𝜃 + 𝑎𝜑) − 𝐾𝑧2𝑎(𝑧 − 𝐿𝑓𝜃 − 𝑎𝜑) + 𝐾𝑧3𝑎(𝑧 + 𝐿𝑟𝜃 + 𝑎𝜑) − 

𝐾𝑧4𝑎(𝑧 + 𝐿𝑟𝜃 − 𝑎𝜑) ± ∑𝐾𝑦𝑗(𝑦 ± ℎ𝜑 + 𝐿𝑓𝜓)

2

𝑗=1

ℎ ± ∑𝐾𝑦𝑗(𝑦 ± ℎ𝜑 − 𝐿𝑟𝜓)

2

𝑗=1

ℎ ± ∑𝐾𝐼𝑗  𝐼𝑗

4

𝑗=1

𝑎 ± ∑𝐾𝐼𝑦𝑗  𝐼𝑦𝑗

4

𝑗=1

ℎ = 0 

∑𝑀𝐺 =𝐼𝑧𝑧𝜓̈ 

𝐼𝑧𝑧𝜓̈ + ∑ 𝐾𝐼𝑦𝑗  𝐼𝑦𝑗𝐿𝑓

2

𝑗=1

+ ∑ 𝐾𝐼𝑦𝑗  𝐼𝑦𝑗𝐿𝑟

4

𝑗=3

+ ∑ 𝐾𝑦𝑗(𝑦 ± ℎ𝜑 + 𝐿𝑓𝜓)

2

𝑗=1

𝐿𝑓 − ∑𝐾𝑦𝑗(𝑦 ± ℎ𝜑 − 𝐿𝑟𝜓)𝐿𝑟

4

𝑗=3

= 0 

where 𝑧 and 𝑦 are the vertical and lateral 

displacements, 𝜃, 𝜑, and 𝜓 are the pitching, 

rolling, and yawing angles respectively. For 

other parameters, 𝑚 is the pod total mass, 𝐾𝑎𝑟𝑖
 is 

the 𝑖𝑡ℎ stiffness of the air cushion on the right 

side of the pod, 𝐾𝑎𝑙𝑖 is the 𝑖𝑡ℎ stiffness of the air 

cushion on the left side of the pod, and similarly, 

𝐶𝑎𝑟𝑖
, is the damping coefficient of the 𝑖𝑡ℎ air 

cushion on the right side, 𝐶𝑎𝑙𝑖,  is the damping 

coefficient of the 𝑖𝑡ℎ air cushion on the right side 

of the pod, 𝐿𝑖 is the longitudinal distance 

between the 𝑖𝑡ℎ air cushion and the center of 

mass (CG), 𝐿𝑓 =
𝐿

2
− 𝑋𝑀 − 𝑋𝐶𝐺  is the 

longitudinal distance between front magnets and 

CG, 𝐿𝑟 =
𝐿

2
− 𝑋𝑀 + 𝑋𝐶𝐺  is the longitudinal 

distance between rear magnets and CG, 𝐾𝑧1, 𝐾𝑧2, 

𝐾𝑧3, and 𝐾𝑧4, respectively are the front left, front 

right, rear left, and rear right vertical magnet 

stiffness. The same argument is also valid for the 

lateral magnets. 𝑊 is the lateral distance 

between air cushions and CG, 𝑎 is the lateral 

distance between the magnets and CG, and ℎ is 

the vertical distance between the magnets and 

CG. It should be noted that 𝐼𝑗 and  𝐼𝑦𝑗 are the 𝑗𝑡ℎ 

vertical and lateral magnetic current intensities, 

𝐾𝐼𝑗 and 𝐾𝐼𝑦𝑗 are the 𝑗𝑡ℎ vertical and lateral 

magnetic current coefficients. 

 By sorting each relation of Eq. 1 according 

to the variables and also by assuming equality of 

stiffness and damping coefficients for all 

cushions with 𝐾𝑎 and 𝐶𝑎, the equations are 

simplified as follows: 
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𝑚𝑧̈ + (20𝐾𝑎 + 𝐾1)𝑧 + (20𝐶𝑎)𝑧̇ + (2𝐾𝑎𝐿̅ + 𝐿𝑟𝐾2 − 𝐿𝑓𝐾3)𝜃 + (2𝐶𝑎𝐿̅)𝜃̇ + (𝐾4 + 𝐾5)𝑎𝜑 − 𝐾𝐼1𝐼1
− 𝐾𝐼2𝐼2 − 𝐾𝐼3𝐼3 − 𝐾𝐼4𝐼4 = 0 

(2) 

𝑚𝑦̈ + 𝐾1𝑦𝑦 + (𝐾4𝑦 + 𝐾5𝑦)ℎ𝜑 + (𝐾3𝑦𝐿𝑓 − 𝐾2𝑦𝐿𝑟)𝜓 + 𝐾𝐼𝑦1 𝐼𝑦1 − 𝐾𝐼𝑦2 𝐼𝑦2 + 𝐾𝐼𝑦3 𝐼𝑦3 − 𝐾𝐼𝑦4 𝐼𝑦4 = 0 

𝐼𝑦𝑦𝜃̈ + (2𝐾𝑎𝐿̅ + 𝐿𝑟𝐾2 − 𝐿𝑓𝐾3)𝑧 + (2𝐶𝑎𝐿̅)𝑧̇ + (2𝐾𝑎𝐿̅2 + 𝐿𝑟
2𝐾2 + 𝐿𝑓

2𝐾3)𝜃 + (2𝐶𝑎𝐿̅2)𝜃̇

+ (𝐿𝑟𝐾4 − 𝐿𝑓𝐾5)𝑎𝜑 + 𝐾𝐼1𝐿𝑓𝐼1 + 𝐾𝐼2𝐿𝑓𝐼2 − 𝐾𝐼3𝐿𝑟𝐼3 − 𝐾𝐼4𝐿𝑟𝐼4 = 0 

𝐼𝑥𝑥𝜑̈ + (𝐾4 + 𝐾5)𝑎𝑧 + (𝐾1𝑦)ℎ𝑦 + (𝐿𝑟𝐾4 − 𝐿𝑓𝐾5)𝑎𝜃 + (20𝐾𝑎𝑊2 + 𝐾1𝑎
2 + (𝐾4𝑦 + 𝐾5𝑦)ℎ2)𝜑 +

(20𝐶𝑎𝑊2)𝜑̇ + (𝐾4𝑦𝐿𝑟 − 𝐾5𝑦𝐿𝑓)ℎ𝜓 + 𝐾𝐼1𝐼1𝑎 − 𝐾𝐼2𝐼2𝑎 + 𝐾𝐼3𝐼3𝑎 − 𝐾𝐼4𝐼4𝑎 + 𝐾𝐼𝑦1𝐼𝑦1ℎ − 𝐾𝐼𝑦2𝐼𝑦2ℎ +

𝐾𝐼𝑦3𝐼𝑦3ℎ − 𝐾𝐼𝑦4𝐼𝑦4ℎ = 0. 

𝐼𝑧𝑧𝜓̈ + (𝐾3𝑦𝐿𝑓 − 𝐾2𝑦𝐿𝑟)𝑦 + (𝐾4𝑦𝐿𝑟 − 𝐾5𝑦𝐿𝑓)ℎ𝜑 + (𝐾3𝑦𝐿𝑓
2 + 𝐾2𝑦𝐿𝑟

2
)𝜓 + 𝐾𝐼𝑦1 𝐿𝑓𝐼𝑦1 − 𝐾𝐼𝑦2 𝐿𝑓𝐼𝑦2

− 𝐾𝐼𝑦3 𝐿𝑟𝐼𝑦3 + 𝐾𝐼𝑦4 𝐿𝑟𝐼𝑦4 = 0 
 

In the simplified Eq. 2, 𝐿̅ = 27.1   (𝐿̅ = 𝐿1 ±
𝐿2 ± ⋯± 𝐿10) is the sum of the longitudinal 

distances between the air cushions on each side 

and the CG, which is the negative sign for the 

front of CG and is positive for the rear of CG. 

Also, 𝐿̅2 = 403.441 𝑚2 (𝐿̅2 = 𝐿1
2 + 𝐿2

2 +

⋯+ 𝐿10
2) is the sum of the squared distances 

between the air cushions on each side and CG, 

and other coefficients are defined as follows: 

𝐾1 = 𝐾𝑧1 + 𝐾𝑧2 + 𝐾𝑧3 + 𝐾𝑧4 

𝐾2 = 𝐾𝑧3 + 𝐾𝑧4  
𝐾3 = 𝐾𝑧1 + 𝐾𝑧2    
𝐾4 = 𝐾𝑧4 − 𝐾𝑧3   
𝐾5 = 𝐾𝑧2 − 𝐾𝑧1   

(3) 
𝐾1𝑦 = 𝐾𝑦1 + 𝐾𝑦2 + 𝐾𝑦3 + 𝐾𝑦4 

𝐾2𝑦 = 𝐾𝑦4 + 𝐾𝑦3 

𝐾3𝑦 = 𝐾𝑦2 + 𝐾𝑦1  

𝐾4𝑦 = 𝐾𝑦4 − 𝐾𝑦3  

𝐾5𝑦 = 𝐾𝑦2 − 𝐾𝑦1   
 

Now, we use the EMS formula to calculate 

the equivalent stiffness coefficients caused by air 

cushions and the stiffness and current coefficient 

of vertical and lateral magnets. Therefore, first, 

the main relationship for calculating the vertical 

and lateral forces of an EMS-type system is 

expressed as follows: 

𝐹𝑧(𝑖𝑧, 𝑧) =
𝜇0𝐴𝑚𝑁2𝑖𝑧

2

4𝑧2
 

𝐹𝑦(𝑖𝑦, 𝑦) =
𝜇0𝐴𝑚𝑁2𝑖𝑦

2

4𝑦2
 

(4) 

In Eq. 4, 𝐹𝑧 and 𝐹𝑦 are the vertical and lateral 

(known as guidance force) EMS forces which 

are a function of parameters containing the 

vertical 𝑖𝑧,  𝑧, and lateral 𝑖𝑦,  𝑦, current and gap. 

Also, the constant coefficients of this 

relationship include 𝜇0 = 4𝜋 × 10−7 𝐻

𝑚
  

magnetic permeability coefficient in the 

vacuum, 𝐴𝑚 = 0.1 𝑚2 cross-sectional area of 

magnets, and 𝑁 = 330 number of coil turns. As 

seen in Eq. 4, the EMS formula for calculating 

the vertical (levitation) and lateral (guidance) 

forces are similar. The only difference is that one 

is defined in the vertical and the another in the 

lateral direction. In Eq. 4, by linearizing the EMS 

levitation and guidance forces formula about the 

stable vertical 𝑖0𝑧 = 15 𝐴, 𝑧0 = 10 𝑚𝑚, and 

lateral 𝑖0𝑦 = 20 𝐴, 𝑦0 = 10 𝑚𝑚 current and 

gap, we have: 

 [
 D

O
I:

 1
0.

22
06

8/
ijr

ar
e.

30
8 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
ra

re
.iu

st
.a

c.
ir

 o
n 

20
25

-0
7-

08
 ]

 

                             6 / 18

http://dx.doi.org/10.22068/ijrare.308
https://ijrare.iust.ac.ir/article-1-308-en.html


Petoft et al. 

 

27       International Journal of Railway Research (IJRARE) 
 

∆𝐹𝑧 = |
𝜕𝐹𝑧

𝜕𝑖𝑧
|
(𝑖0𝑧,𝑧0)

𝑖𝑧(𝑡) + |
𝜕𝐹𝑧

𝜕𝑧
|
(𝑖0𝑧,𝑧0)

𝑧(𝑡) = 𝐾𝐼𝑗𝑖(𝑡) + 𝐾𝑧𝑗𝑧(𝑡) 

𝐾𝐼𝑗 =
𝜇0𝐴𝑚𝑁2𝑖0𝑧𝑗

2𝑧0
2

 ,   𝐾𝑧𝑗 = −
𝜇0𝐴𝑚𝑁2𝑖0𝑧𝑗

2

2𝑧0
3

 

∆𝐹𝑦 = |
𝜕𝐹𝑦

𝜕𝑖𝑦
|
(𝑖0𝑦,𝑦0)

𝑖𝑦(𝑡) + |
𝜕𝐹𝑦

𝜕𝑦
|
(𝑖0𝑦,𝑦0)

𝑦(𝑡) = 𝐾𝐼𝑦𝑗𝑖(𝑡) + 𝐾𝑦𝑗𝑦(𝑡) 

𝐾𝐼𝑦𝑗 =
𝜇0𝐴𝑚𝑁2𝑖0𝑦𝑗

2𝑦0
2

 ,   𝐾𝑦𝑗 = −
𝜇0𝐴𝑚𝑁2𝑖0𝑦𝑗

2

2𝑦0
3

 

(5) 

After defining and explaining these parameters, 

we calculate the mass, stiffness, and damping 

coefficients of the presented equations of Eq. 2. 

The governing equations can be described in the 

matrix form as 𝑀𝑋̈ + 𝐶𝑋̇ + 𝐾𝑋 = 𝐹, where 𝑋 =
[𝑧 𝑦 𝜃𝑦𝑦 𝜑𝑥𝑥 𝜓𝑧𝑧]𝑇 is the matrix of 

variables and 𝐹 is the matrix external forces.  

Considering that the system is assumed to be in 

a steady state with a constant current intensity in 

both directions (𝑖𝑦 = 𝑖𝑦0  ,  𝑖𝑧 = 𝑖𝑧0) and there 

isn’t any disturbing external force, so 𝐹 =  0. 

Thus, the remaining coefficients of the matrix 

can also be obtained as follows: 

𝑀 =

[
 
 
 
 
𝑚 0 0 0 0
0 𝑚 0 0 0
0 0 𝐼𝑦𝑦 0 0

0 0 0 𝐼𝑥𝑥 0
0 0 0 0 𝐼𝑧𝑧]

 
 
 
 

 

𝐾 =

[
 
 
 
 
 
 

20𝐾𝑎 + 𝐾1 0 2𝐾𝑎𝐿̅ + 𝐿𝑟𝐾2 − 𝐿𝑓𝐾3 (𝐾4 + 𝐾5)𝑎 0

0 𝐾1𝑦 0 (𝐾4𝑦 + 𝐾5𝑦)ℎ 𝐾3𝑦𝐿𝑓 − 𝐾2𝑦𝐿𝑟

2𝐾𝑎𝐿̅ + 𝐿𝑟𝐾2 − 𝐿𝑓𝐾3 0 2𝐾𝑎𝐿̅2 + 𝐿𝑟
2𝐾2 + 𝐿𝑓

2𝐾3 (𝐿𝑟𝐾4 − 𝐿𝑓𝐾5)𝑎 0

(𝐾4 + 𝐾5)𝑎 (𝐾4𝑦 + 𝐾5𝑦)ℎ (𝐿𝑟𝐾4 − 𝐿𝑓𝐾5)𝑎 20𝐾𝑎𝑊2 + 𝐾1𝑎
2 + (𝐾4𝑦 + 𝐾5𝑦)ℎ2 (𝐾4𝑦𝐿𝑟−𝐾5𝑦𝐿𝑓)ℎ

0 𝐾3𝑦𝐿𝑓 − 𝐾2𝑦𝐿𝑟 0 (𝐾4𝑦𝐿𝑟−𝐾5𝑦𝐿𝑓)ℎ 𝐾3𝑦𝐿𝑓
2 + 𝐾2𝑦𝐿𝑟

2
]
 
 
 
 
 
 

 

𝐶 =

[
 
 
 
 
20𝐶𝑎 0 2𝐶𝑎𝐿̅ 0 0

0 0 0 0 0
2𝐶𝑎𝐿̅ 0 2𝐶𝑎𝐿̅

2 0 0

0 0 0 20𝐶𝑎𝑊2 0
0 0 0 0 0]

 
 
 
 

 

(6) 

2.2. Air Cushions Modeling and Performed 

Calculations 

In this section, the dynamic modeling of the air 

cushions is presented. In this regard, we first 

introduce the air cushions modeling as follows: 
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Fig. 2: Circular air cushion model and dimensions 

As seen in Fig. 2, we modeled a circular air 

cushion with its dimensions in SolidWorks. We 

selected a cushion like Paval et al.’s model [6] 

for a hovercraft system. The model consists of an 

inlet channel for the airflow passage. A circular 

bottom plate is connected to the body via four 

supporting pins. In this regard, airflow leaves the 

system through the lateral gap between the plate 

(pad) and the cushion body. Afterward, we 

analyzed the CFD of the model using Ansys 

Fluent software. Note, we also designed 

different air cushion shapes in SolidWorks, 

including equilateral triangles, circles, ellipses, 

rectangles, squares, and four other combined 

shapes, including circle-rectangles and circle-

squares (known as oval shapes), hexagonals, and 

fillet squares (with two different radii). But after 

equalizing the cross-sectional area of all shapes 

and simulating the same for all of them, we 

found that the cushion with circular geometry 

creates the most lift force in the same conditions 

compared to the others. In Fig. 3, we can see the 

cushion meshing and governing boundary 

conditions for simulating the system as follows: 

 

 
Fig. 3: 3D Meshing of the cushion and governing boundary conditions 
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After performing several simulations, finally, we 

obtained a new approximate mathematical 

formula for calculating the cushion lift force in 

terms of some parameters containing the inlet 

airflow velocity, air gap, lateral gap, and Scaling 

Factor (SF) as follows: 

𝐹𝐶(𝑧, 𝑦, 𝑣′, 𝑆𝐹) = 𝛿𝑧−2.05𝑒−0.0045𝑦(𝑣′)1.985(𝑆𝐹)4  (7) 

where 𝑧 is the air gap (𝑚𝑚) (between the 

cushion and ground), 𝑦 is the lateral gap 

(𝑚𝑚) (between the pad and cushion body), 𝑣′ is 

the air inlet velocity (𝑚/𝑠), 𝑆𝐹 is the scaling 

factor, and 𝛿 is the geometric shape constant 

coefficient. For the circular cushion, we have 

𝑦 = 30 𝑚𝑚, 𝛿 = 739, 𝑆𝐹 = 1, and 𝑣′ =
8.25 𝑚/𝑠.  

𝐹𝐶(𝑧) = 𝛽𝑧−2.05 (8) 
 

Eq. 8 shows the cushion lift force became the 

only function of the vertical air gap 𝑧 with 𝛽 =
42577. According to the designed system, we 

evaluated the overall weight of the pod as 

approximately 26 Tons (26000 𝐾𝑔). According 

to Elon Musk's report[1], the outlet pressure of 

every cushion is approximated with 𝑃 =
10 𝐾𝑃𝑎. Also, the cross-sectional area of each 

air cushion is 𝐴𝐶 = 1.44 𝑚2. Thus, the lift force 

of every cushion will be equal to 𝐹𝐶 = 𝑃𝐶𝐴𝐶 =
14.4 𝐾𝑁. 

 Therefore, we calculated the minimum 

number of air cushions needed to overcome the 

overall weight as 𝑁𝐶 = 18. where 𝑁𝐶  is the 

minimum number of air cushions. For more 

reassurance, we provided 20 (or 10 pairs) air 

cushions for the pod suspension.  

 

2.3.  Model Verification 

The 5-DOF natural frequencies of the system are 

calculated using the eigenvalues problem 

method in Eq. 8. Then, the obtained frequencies 

are compared with the results of vibration 

simulation of the system in ADAMS software to 

ensure the correctness of the 5-DOF dynamic 

equations. In this regard, the same 5-DOF pod 

with its air cushions and magnets is designed in 

the vertical and lateral directions in the ADAMS 

environment as follows: 

 
Fig. 4: Simulation of 5-DOF pod model in ADAMS from (a) isometric, (b) front views 

 

According to Fig. 4, the same pod with its 

suspension systems by modeling air cushions 

and magnets with linear springs and dampers 

(the air cushions in red, vertical magnets in blue 

and lateral ones in yellow color). Also, we 

defined all dimensions and technical 

specifications of the previous pod for this 

simulation model. In addition, we considered all 

design parameters in the simulated model 

containing the pod dimensions, total pod mass, 

the center of mass position (2.68, 0, −0.56), 

mass moments of inertia of rolling, pitching, and 

yawing (𝐼𝑥𝑥,  𝐼𝑦𝑦, 𝐼𝑧𝑧), the location of air 

cushions and magnets, and the linear stiffness of 

each of them. 

In Table. 1, the system simulation results in 

the ADAMS software and the obtained 

analytical eigenvalues (natural frequencies) are 

compared with each other as follows: 

 

 (b)  (a) 
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Table. 1: Comparing the eigenvalues of analytical solution with numerical ADAMS 

Vibration 

Mode 

Eigenvalue 

Eigenvector (Mode Shape) 

ADAMS Analytical 

1 ±19.123𝑖 ±19.235𝑖 0,−0.9985, 0, 0.03,−0.045 

2 −0.163 ± 24.57𝑖 −0.169 ± 24.4𝑖 0, 0, 0, 1, 0 

3 ±74.39𝑖 ±74.75𝑖 0, 0.2134, 0, 0.004,−0.977 

4 −2.561 ± 95.239𝑖 − 2.561 ± 95.239𝑖 −0.9927,0, 0.121,0, 0 

5 −6.908 ± 156.27𝑖 −6.908 ± 156.26𝑖 −0.9585, 0, −0.285,0, 0 

According to Table. 1, we compared the 

calculated eigenvalues (natural frequencies) 

from the analytical method with numerical 

simulation in ADAMS. In Table. 1, it is clear that 

the results of the eigenvalues obtained from the 

two methods are very close to each other for the 

damped system case with 𝐶𝑎 = 10 
𝐾𝑁.𝑠𝑒𝑐

𝑚
.  

We also obtained the eigenvector in the 

undamped case to show the pod mode shapes in 

each vibration mode. Thus, in each vibration 

mode, any variable that has a higher numerical 

value (up to the value of 1) will be more excited 

in that mode. The positive sign means that the 

movement of the degree of freedom variable is 

in the same direction as the conventional positive 

direction defined in the system, and the negative 

sign shows that the movement of the variable is 

in the opposite direction and the zero value 

shows that the variable is not excited in that 

vibration mode. 

 

3. System Modeling with Compressor 

Unbalanced Excitation Force 

First, we assume that an unbalance driving force 

due to the rotation of the compressor was created 

at the end of one of its blades, as modeled in 

Fig.1: 

 
Fig. 5: The compressor's unbalanced force in the proposed pod model 
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As seen in Fig. 5, the unbalanced driving force 

with the symbol 𝐹𝑈𝑀, resulting in the unbalanced 

mass 𝑚𝑈, is located at the distance of 𝑟 from the 

center of the compressor. Assuming motor-

compressor rotation with 𝜔, at any moment of 

time 𝑡, the angular position of the force relative 

to the center of the compressor spin will be 𝜔𝑡. 

However, since the force direction always 

intersects the center of the compressor, 

transferring it to the center causes its torques to 

cancel each other. Therefore, we only placed the 

lateral and vertical forces in the center of the 

compressor without the torque coupling effect. 

Considering that, the compressor center is 

accurately in line with the geometric center of 

the pod. These forces are also applied in line with 

the geometric center in front of the pod . 

The amount of vertical force will be equal to 

𝐹𝑈𝑀𝑧 = 𝐹𝑈𝑀 sin𝜔𝑡; the amount of lateral force 

is equal to 𝐹𝑈𝑀𝑦 = 𝐹𝑈𝑀 cos𝜔𝑡, where 𝐹𝑈𝑀 =

𝑚𝑈𝑟𝜔2. 𝑚𝑈 is the unbalanced mass of the blade, 

and 𝜔 is the rotational speed of the compressor 

in revolution-per-minute or 𝑅𝑃𝑀. In this model, 

the suspension magnetic current is assumed to be 

stabled and constant with the value of 𝐼0. 

Therefore, the EMS  suspension force formula 

for both frames will only be a function of the 

vertical gap 𝑧.  

Writing the equations in the form 𝑀𝑋̈ + 𝐶𝑋̇ +

𝐾𝑋 = 𝐹 again, the external force matrix can be 

calculated as follows: 

(9) 𝐹 =

[
 
 
 
 
 
 

𝑒𝜔2 sin(𝜔𝑡)

𝑒𝜔2 cos(𝜔𝑡)

𝑒(
𝐿

2
− 𝑋𝐶𝐺)𝜔2 𝑠𝑖𝑛(𝜔𝑡)

0

𝑒(
𝐿

2
− 𝑋𝐶𝐺)𝜔2 cos(𝜔𝑡)]

 
 
 
 
 
 

 

In Eq. 9, we define 𝑒 = 𝑚𝑈𝑟 as the unbalancing 

parameter, and 𝑋𝐶𝐺 is the longitudinal distance 

between the center of mass and the geometric 

center. Other matrix coefficients are the same as 

in Eq. 6. 
 

4. Analytical Determination of System 

Responses 

After determining the coefficient matrix of the 

equations in the form of 𝑀𝑋̈ + 𝐶𝑋̇ + 𝐾𝑋 = 𝐹, in 

this section, using the Impedance Matrix 

method, we determine the system's response and 

natural frequencies through an analytical 

solution. In this way, assuming the responses 

initial selection variables and the external 

excitation forces, respectively, in the exponential 

form 𝑋 = 𝑋0𝑒
𝑖𝜔𝑡 and 𝐹 = 𝐹0𝑒

𝑖𝜔𝑡, where 𝐹0 =

𝑒𝜔2, we have: 

(10) 

𝑍𝑖𝑗 = −𝑀𝑖𝑗𝜔
2 + 𝐶𝑖𝑗𝑖𝜔 + 𝐾𝑖𝑗  

(𝑖, 𝑗 = 1,2, … , 𝑛) 

[𝑍]𝑋⃗ = 𝐹⃗   

In Eq.10, [𝑍] is the impedance matrix, and 𝑍𝑖𝑗 is 

the 𝑖th and 𝑗th array of the impedance matrix. 

This matrix is an index to show the system's 

resistance level against the excitation of external 

forces. We can calculate the system's natural 

frequencies using the determinant of the 

impedance matrix equal to zero as |𝑍| = 0. 

In Eq. 10, we can use the following relation to 

determine the response of the variables of the 

system: 

(11) 

[𝑍5∗5 ]𝑋⃗ = 𝐹⃗ →   𝑋⃗ = [𝑍5∗5 ]−1𝐹⃗ 

𝑋⃗ =
1

|𝑍|
[𝐴]

[
 
 
 
 
 
 

𝑒𝜔2 sin(𝜔𝑡)

𝑒𝜔2 cos(𝜔𝑡)

𝑒(
𝐿

2
− 𝑋𝐶𝐺)𝜔2 𝑠𝑖𝑛(𝜔𝑡)

0

𝑒(
𝐿

2
− 𝑋𝐶𝐺)𝜔2 cos(𝜔𝑡)]

 
 
 
 
 
 

 

In Eq. 11, |𝑍| is the determinant of the 

impedance matrix, and [𝐴] is the impedance 

adjunct matrix. As seen, the product of the 

inverse impedance matrix in the matrix of 

external excitation forces is equal to the 

variables’ response. Paying close attention to Eq. 

11, it is clear that when the excitation frequency 

𝜔 caused by the external unbalanced force 

becomes equal to the natural frequencies ω𝑛, the 
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denominator of Eq. 11 or |𝑍| will be zero, and 

thus the matrix of the system variables response 

or  𝑋⃗  will be infinite. Therefore, the system will 

become unstable. This state of instability is 

called the Resonance phenomenon. To better and 

physically show the instability in this case, in the 

next section, we will discuss the numerical 

solution of the system, using MATLAB 

software. 

 

5. Numerical Solutions and Discussions 

In this section, we investigate different issues 

numerically. First, we physically show the 

resonance occurrence caused by the unbalanced 

excitation forces. Then we analyze the effects of 

air cushions’ damping and different values of 

unbalancing on the system oscillations and 

responses. Finally, we present the influences of 

the pod’s total mass and stiffness of air cushions 

on the natural frequencies for the undamped 

system case. 

 

5.1.  Resonance Phenomenon 

In this section, we examine the state of resonant 

instability, which means the equality of the 

external force's excitation frequency with the 

natural frequencies in the undamped system in 

the form of a physical representation using 

equation simulation and numerical solution 

using MATLAB software. 

We calculated the natural frequencies and 

reported them in Table. 1. Therefore, the 

excitation frequency of the system in resonance 

mode is equal to: 

(12) 

𝜔 = 𝜔𝑛3 = 74.75 ∗
60

2𝜋
= 713.84 𝑟𝑝𝑚 

𝜔 = 𝜔𝑛4 = 95.27 ∗
60

2𝜋
= 909.79 𝑟𝑝𝑚 

𝜔 = 𝜔𝑛5 = 156.41 ∗
60

2𝜋
= 1493.6 𝑟𝑝𝑚 

 

We did not report the first two frequencies 

because of their low values. Thus, by 

numerically solving Eq. 6, using the "ode45" 

command in MATLAB, the results are reported 

as follows: 

 
Fig. 6: Vertical displacement instability caused by 

the resonance phenomenon in the last three vibration 

modes for the undamped system 

 
Fig. 7: Lateral displacement instability caused by the 

resonance phenomenon in the last three vibration 

modes for the undamped system 

Figs. 6-7 show all DOF diagrams according to 

the simulation time in the resonance state at the 

last three natural frequencies. We considered the 

excitation frequency equal to the natural 

frequencies for the undamped system case. We 

selected and reported some results showing 

different behavior over time. In Fig. 7, the lateral 

displacement (and yawing angle similarly) 

diverges concerning time, and the system 

becomes dynamically unstable only for 𝜔 = 𝜔𝑛3. 

However, Fig. 6 shows that the vertical 

displacement (and pitching angle similarly) 

behaves differently. It acts like the “Beating” 

phenomenon. The oscillations amplitude of the 

vertical displacement (and pitching angle) more 

rapidly increases when 𝜔 = 𝜔𝑛5  compared to 

𝜔 = 𝜔𝑛4. The beating phenomenon occurs when 
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the excitation frequency becomes very close (but 

not equal) to the system’s natural frequencies. 

However, at the beating state, the amplitude of 

the fluctuations doesn’t increase in the 

subsequently repeated oscillations. But the 

rolling angle is not changed in the resonance 

state. Because in this case, according to Eq. 11, 

there is no external force in the rolling moment 

equation. Thus, it doesn’t affect the rolling 

angle. 

However, we can suggest two practical solutions 

to deal with and avoid facing this problem. The 

first and obvious solution is to adjust the 

compressor engine speed as far as possible from 

the system's natural frequencies. The second one 

is to use dampers in the system with sufficient 

damping, which means that even if the excitation 

force frequency is equal to the system's natural 

frequencies, there would be no resonance and 

divergence of the oscillation range. 

Clarifying the issue, we have done another 

simulation with the damping coefficient of the 

cushions with three different values as 𝐶𝑎 = 5, 7, 

and 10 
𝐾𝑁.𝑠𝑒𝑐

𝑚
 for the last mode resonance as 𝜔 =

𝜔𝑛5 = 1493.6 𝑟𝑝𝑚. We presented the obtained 

results as follows: 

 
Fig. 8: The pod vertical displacement during the last 

mode resonance with different air cushions’ 

damping coefficient 

As seen in Fig. 8, in the case of the air cushion 

damping existence, the amplitude of vertical 

displacement fluctuations (and similarly 

pitching angle) is not diverged concerning time, 

even though the force excitation frequency (𝜔) is 

equal to the last natural frequency (𝜔𝑛5). it 

vibrates at uniform repeating oscillations with a 

constant period of about 5 seconds with the same 

amplitude, similar to the beating phenomenon. 

According to Fig. 8, also it is clear that the 

amplitude of the oscillations decreases by 

increasing the air cushions’ damping coefficient 

or 𝐶𝑎. 

 

5.2.  Unbalancing Parameter Influence 

We simulated other cases with three different 

values unbalancing parameter (𝑒). Assuming the 

initial unbalancing parameter as 𝑒0 = 1.05, and 

air cushions damping and the force excitation 

frequency respectively as 𝐶𝑎 = 10 
𝐾𝑁.𝑠𝑒𝑐

𝑚
 and 

𝜔 = 2000 𝑟𝑝𝑚 , we obtained the following 

results: 

 

 
Fig. 9: Vertical and lateral displacement with 

different values of the unbalancing parameter 
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Fig. 10: Body pitching, yawing, and rolling angles 

with different values of the unbalancing parameter 

 

As seen in Fig. 9 and Fig. 10, the diagram of the 

vertical and lateral displacements and body 

pitching, rolling, and yawing angles with various 

fluctuations repeating in different unbalancing 

parameter (𝑒) values. According to the diagrams, 

the oscillations decrease by decreasing the 𝑒 for 

every variable except for the rolling angle. 

Because as mentioned earlier, the external force 

does not exist in the rolling moment equation. 

But the rolling angle converged to a stable state 

over time due to the damping effect of the air 

cushions. 

 

5.3.  Effect of Design Parameters on Natural 

Frequencies 

In this section, we investigated the effect of 

changing two design parameters on the system’s 

last three natural frequencies. These parameters 

are the pod’s total mass and the air cushions’ 

stiffness. The total mass can be changed by 

changing the number of passengers, adding or 

removing cargo, and even changing the choice of 

materials used in different components. On the 

other hand, changing the air pressure inside each 

cushion leads to a change in its equivalent 

stiffness value. Therefore, we analyzed the 

variations of these two effective parameters on 

the natural frequency behavior for the undamped 

system case as follows: 
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Fig. 11: Air cushion stiffness with different total 

mass values versus the last three natural 

frequencies for the undamped system 

 

According to Fig. 11, the last three natural 

frequencies increased by increasing the total 

mass, and it decreased by increasing every air 

cushion stiffness except for the third natural 

frequency or 𝜔𝑛3 for the undamped system. 

Because the 𝜔𝑛3 affects the lateral motion and 

much more intensively yawing angle (mode 

shapes of Table.1) and thus, it is related to the 

lateral movement of the pod. Therefore, the 

vertical stiffness of air cushions didn’t change 

the 𝜔𝑛3.  

 

 

6.  Conclusions 

In this article, we first presented a 5-DOF model 

for a pod with the conceptually designed model. 

The proposed pod was equipped with both air 

cushions and EMS magnets simultaneously. We 

simulated the system in ADAMS software to 

verify the proposed model by comparing the 

obtained natural frequencies of the numerical 

and analytical methods. Then, we investigated 

the unbalanced force's influence on the vibration 

and instability of the pod using analytical and 

numerical methods. Results showed that the 

unbalanced force caused creating the resonance 

phenomenon when its excitation frequency 

becomes equal to the pod's natural frequencies in 

the undamped case except for the rolling angle. 

Also, the system oscillations increase by 

increasing the unbalancing parameter. The 

presence of dampers such as air cushions in the 

system can help to reduce the fluctuations' 

amplitude and deal with harmful effects of the 

external disturbing excitation forces and make 

the pod stable even in the resonance state. 

Finally, we investigated the effects of varying 

the pod total mass and stiffness of air cushions 

on changing the last three natural frequencies. 

Results illustrated that natural frequencies 

increased by increasing the total mass and 

decreasing every air cushion stiffness except for 

the third natural frequency for the undamped 

system case. 
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Appendix 

 

Appendix 1: Proposed pod technical specifications 

Parameter Value Unit 

Pod Overall Length 23 𝑚 

Pod Effective Length (𝐿) 19 𝑚 

Longitudinal Distance Between Front Magnets and CG (𝐿𝑓) 4.82 𝑚 

Longitudinal Distance Between Rear Magnets and CG (𝐿𝑟) 10.18 𝑚 

Pod Width 2.8 𝑚 

Pod Height 2.5 𝑚 

Pod Chassis Height 0.3 𝑚 

Tube Diameter 6 𝑚 

Position of the Pod Center of Gravity (CG) 

(Relative to the Geometric Center Coordinate) 
𝑥 = 2.68 , 𝑦 = 0 , 𝑧 = −0.56 𝑚 

Mass Moment of Inertia of the Pod Components About CG 
𝐼𝑥𝑥 = 713735 , 𝐼𝑦𝑦 = 717705 , 

𝐼𝑧𝑧 = 125420 
𝑘𝑔.𝑚2 

Pod Total Mass (𝑚) 25923 𝑘𝑔 

Number of Air Cushions 20 − − − 

Number of EMS Frames 4 − − − 

Each EMS Frame Length 4 𝑚 

Lateral Distance Between EMS Magnets (2𝑎) 1 𝑚 

Linearized Stiffness of Each Frame Vertical Magnets (𝐾𝑧𝑗) 1.5395 𝐾𝑁/𝑚𝑚 

Linearized Stiffness of Each Frame Lateral Magnets (𝐾𝑦𝑗) 2.737 𝐾𝑁/𝑚𝑚 

Linearized Stiffness of Each Air Cushion (𝐾𝑎) 17.3 𝐾𝑁/𝑚𝑚 

Lateral Distance Between Air Cushions (2𝑊) 2.2 𝑚 

Longitudinal Distance Between Air Cushions 2 𝑚 

Vertical Distance Between Lateral Magnets and CG (ℎ) 0.96 𝑚 

Cross-sectional Area of Each Cushion (𝐴𝐶) 1.44 𝑚2 

Each Cushion Pressure 10 𝐾𝑃𝑎 

Main Compressor Turbine Diameter 2.1 𝑚 

Material of Compressor Components Stainless Steel − − − 

Passenger Capacity 30 𝑃𝑒𝑜𝑝𝑙𝑒 

Average Weight of Every Passenger 75 𝑘𝑔 
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