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1. Introduction  

Wheel flats result from the friction occurring 

between the wheel and the rail on railway 

vehicles [1]. If a wheel flat occurs, it could 

potentially damage the bogie mechanism, 

affecting the vehicle's stability during operation 

and overall riding comfort [2]. As a result, it is 

essential to conduct corrective maintenance 

when wheel flats occur. Typically, railway 

maintenance personnel inspect wheel flats 

visually, one by one. However, consider a 

standard train consisting of 10 units; this 

illustrates the challenge of inspecting 80 wheels 

individually. 

Furthermore, relying solely on visual 

inspections often results in missed wheel flats 

and continued operation of damaged wheels. 

Consequently, this approach diminishes work 

efficiency and shortens the wheelset's lifespan. 

To address this issue, it becomes imperative to 

implement condition-based maintenance, 

enhancing work efficiency and prolonging wheel 

lifespan. Additionally, railway vehicles incur 

maintenance costs of hundreds of millions of 

dollars annually. Therefore, the systematic 
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Given the significant role of the railway sector in transportation, railway 

managers and operators place great importance on traffic and maintenance 

costs. While existing track wayside monitoring systems can detect 

geometric defects in train wheels, like flats, they do not provide a severity 

assessment. To address this limitation, the WAY4SafeRail project aims to 

enhance rail safety by assessing the condition of train wheels. As an initial 

step in employing Artificial Intelligence Techniques, this paper presents a 

portion of the research conducted within the WAY4SafeRail project, 

specifically focusing on numerical simulations of wheel defects, in 

particular wheel flats. The proposed methodology has demonstrated its 

reliability and cost-effectiveness in identifying wheel defects. 
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application of condition-based maintenance is 

expected to reduce overall life cycle costs [3]. 

Randall [4] conducted a study on vibration 

signals originating from both rotating and 

reciprocating machinery, including abnormal 

signals identified during analysis. Gao et al. [5] 

introduced a technique for diagnosing wheel flat 

defects in rail vehicles, which relied on detecting 

vertical changes caused by these defects using 

the Parallelogram Mechanism. Liang et al. [6] 

applied time-frequency methods to detect wheel 

flats, while Yang et al. [7] successfully 

employed supervised learning to identify rail 

defects. Chandra et al. [8] used unsupervised 

learning to detect rail clamp defects. Bosso et al. 

[9] devised a method to detect wheel flat defects 

by measuring vertical acceleration on the axle 

box, with validation through simulations and 

testing. Initially, the wheel flat index algorithm 

could detect small flats and estimate their 

severity. Mosleh et al. [10, 11] proposed a 

method to differentiate between a defective and 

healthy wheel based on the envelope spectrum 

technique. 

In recent decades, various onboard and 

wayside systems have been suggested for 

detecting wheel defects during train operations 

[12, 13]. Several onboard technologies utilize 

vibration, acoustics, image detection, and 

ultrasonics [9]. Achieving a complete diagnosis 

of wheel conditions and effective management 

necessitates equipping all wheels with sensors. 

However, this approach is infrequently 

employed due to its high cost and maintenance 

challenges. As an alternative, wayside 

measurement systems are employed to identify 

wheel flats because they assess all wheels as 

trains pass [2, 14, 15]. 

While numerous publications have addressed 

railway defect detection, the available literature 

on automatic early wheel flat detection is, to the 

authors' knowledge, quite scarce. Most of the 

proposed wheel flat detection techniques do not 

possess the capability to automatically 

differentiate a defective wheel from a healthy 

one. Moreover, the majority of the studies 

mentioned above rely on multiple sensors to 

make this distinction. This research introduces 

an automatic method for detecting wheel flats 

using an unsupervised learning approach, 

utilizing just a single sensor installed on the rail. 

The current paper presents a segment of the 

research conducted within the WAY4SafeRail 

project, specifically focusing on numerical 

simulations of wheel defects. The primary 

objectives of this project are twofold: firstly, to 

enhance the assessment of railway wheel 

conditions during operation by monitoring and 

categorizing the severity of wheel issues, and 

secondly, to improve the safety of vehicle 

operations by detecting instability situations, 

such as unbalanced loads and the hunting 

movement, through the application of robust 

artificial intelligence techniques to measurement 

data. A notable advantage of this methodology 

lies in its capacity to increase railway track 

availability and lifespan while simultaneously 

reducing maintenance costs. The proposed 

approach has proven to be a dependable and 

cost-efficient means of identifying wheel 

defects. 

 

2. Numerical modeling 

2.1. Modeling of vehicle 

The present research investigates the Laagrss 

freight train, which comprises five wagons. 

According to the UIC classification, this train is 

capable of reaching a maximum speed of 120 

km/h [16]. Figure 1 represents a double freight 

wagon with a weight of 27 t and a carrying 

capacity of 52 t. To create a 3-D multibody 

dynamic model that accounts for suspensions in 

all directions, ANSYS® [18] is employed. This 

model employs spring-damper and mass-point 

elements to represent mass and inertia at the 

center of gravity for each wagon component and 

connects these components using rigid beams. 

The mechanical and geometric properties of the 

vehicle are summarized in Table 1. Further 

details regarding the numerical model of the 

freight wagons can be found in the work of 

Bragança et al. [19]. 

 

Figure 1. Modeling of the vehicle 
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Table 1. Mechanical and geometric properties of 

the vehicle 

Parameter Symbol (unit) Adopted value 

Carbody   

Mass 𝑚𝑐𝑏  (t) 41.1 

Roll moment of inertia  𝐼𝑐𝑏,𝑥 (t. m2) 49 

Pitch moment of inertia  𝐼𝑐𝑏,𝑦 (t. m2) 673 

Yaw moment of inertia 𝐼𝑐𝑏,𝑧 (t. m2) 665 

Length 𝐿𝑐𝑏  (m) 10000 

Wheelset   

Mass 𝑚𝑤 (kg) 1247 

Roll moment of inertia 𝐼𝑤,𝑥  (kg. m2) 312 

Yaw moment of inertia 𝐼𝑤,𝑧 (kg. m2) 312 

Suspensions   

Longitudinal stiffness 𝑘1,𝑥 (kN/m) 44981 

Lateral stiffness 𝑘1,𝑦 (kN/m) 30948 

Vertical stiffness 𝑘1,𝑧 (kN/m) 1860 

Vertical damping 𝑐1,𝑧 (kN. s/m) 16.7 

 

2.2. Modeling of the track  

   Montenegro et al. [20] have developed a finite 

element model of the track using ANSYS® [18]. 

Figure 2 illustrates this model, replicating the 

ballast, sleepers, and rails through a multi-layer 

approach. The railpads, positioned between the 

sleepers and the rail, are represented as spring 

elements that connect the sleepers and the rail. 

Beam elements depict the rails and sleepers, with 

suitable material properties assigned to each. 

Discrete mass points represent the ballast. 

Additionally, to consider foundation flexibility, 

spring-dashpot elements are integrated. Table 2 

provides a description of the track model, while 

further details about the numerical model of 

freight wagons can be found in Mosleh et al. 

[10]. 

 

Figure 2. Modeling of the track 

 

 

Table 2. Mechanical properties of the track 

Parameter Symbol (Unit) Value 

Rail 

𝐴𝑟  (m2) 7.67 × 10−4 

𝜌𝑟  (kg. m3) 7850 

𝐼𝑟  (m4) 
30.38 

× 10−6 

𝐸𝑟  (N/m2) 210 × 109 

Rail pad, longitudinal 
𝑘𝑝,𝑥 (N/ m) 

𝐶𝑝,𝑥 (N. s/m) 

20 × 106 

50 × 103 

Rail pad, lateral 
𝑘𝑝,𝑦 (N/ m) 

𝐶𝑝,𝑦 (N. s/m) 

20 × 106 

50 × 103 

Rail pad, vertical 
𝑘𝑝,𝑧 (N/ m) 

𝐶𝑝,𝑧  (N. s/m) 

500 × 106 

200 × 103 

Sleeper 𝜌𝑠 (N/ m) 2590 

Ballast, longitudinal 
𝑘𝑏,𝑥 (N/ m) 

𝐶𝑏,𝑥 (N. s/m) 

900 × 103 

15 × 103 

Ballast, lateral 
𝑘𝑏,𝑦 (N/ m) 

𝐶𝑏,𝑦 (N. s/m) 

2250 × 103 

15 × 103 

Ballast, vertical 
𝑘𝑏,𝑧 (N/ m) 

𝐶𝑏,𝑧 (N. s/m) 

30 × 106 

15 × 103 

Foundation, longitudinal 𝑘𝑓,𝑥 (N/ m) 20 × 106 

Foundation, lateral 𝑘𝑓,𝑦 (N/ m) 20 × 106 

Foundation, vertical 𝑘𝑓,𝑧 (N/ m) 20 × 106 

 

2.3. Track irregularity 

Actual railway tracks exhibit minor 

imperfections in their rails. Despite the small 

scale of these irregularities, their impact on the 

interaction between wheels and rails should not 

be underestimated [21]. Consequently, rail 

unevenness profiles are created within 

wavelength ranges from 1 m to 75 m, aligning 

with the D1 and D2 wavelength intervals defined 

in the European Standard EN 13848-2 [22]. 

Additionally, Power Spectral Density (PSD) 

curves are formulated based on real-world data 

to generate artificial unevenness profiles. For 

further details on how these unevenness profiles 

are generated, please refer to Mosleh et al. [15]. 

 

2.4. Wheel flat profile  

In this study, the second wheel of the third 

wagon on the left side is designated as a 

defective wheel. A uniform statistical 

distribution examines various combinations of 

flat wheel depths (D) and flat wheel lengths (L). 

Three categories are considered for defective 

wheels with different flat lengths (L): low (L1), 

Ballast interface

       Fastner interface

RailSleeper

Foundation

Ballast mass
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medium (L2), and severe (L3). The lower and 

upper limits of the wheel flat length for each 

interval are determined by the uniform 

distributions U (10, 20), U (25, 50), and U (55, 

100). The wheel flat depth (D) is calculated 

using the following equation: 

D =
L2

16Rw
                                                         (1) 

In addition, the vertical profile of a wheel flat 

is determined as follows, where Rw represents 

the wheel's radius, and L denotes the length of 

the flat: 

Z = −
D

2
 (1 − cos

2πx

L
) . H(x − (2πRw − L)),      

0 ≤ x ≤  2πRw                                                    (2) 

 

2.5. Train track interaction   

To replicate the dynamic interactions 

between trains and tracks, the authors have 

developed a proprietary software known as VSI 

- Vehicle-Structure Interaction Analysis. This 

software's validation and comprehensive 

description are available in prior publications 

[23], where it has been applied in various 

contexts [11, 20]. Employing a 3D wheel-rail 

contact model, the normal contact forces are 

computed using Hertzian theory, while the 

tangential forces arising from rolling friction 

creep are determined using the USETAB 

routine. MATLAB® [17] serves as the 

numerical tool for importing the structural 

matrices of vehicles and tracks, which were 

previously modeled via finite element analysis 

(FE). In ANSYS® [18], as previously explained, 

both subsystems are initially modeled 

separately, and the VSI software combines them 

using a fully coupled approach (see [23]). 

Further details regarding the interaction between 

the train and track can be found in the authors' 

prior publications [10, 11, 24, 25]. Figure 3 

illustrates the numerical model. Wheel flat 

detection is achieved by installing eight 

accelerometers along the track, with four sensors 

on the right side and four sensors on the left side, 

all positioned on the rail between two sleepers.

2.6. Damaged and undamaged scenarios  

In the context of the current study, two 

scenarios are examined to test and validate the 

automatic wheel flat detection method: 

undamaged (baseline) wheels and damaged 

wheels. The baseline scenario simulates a train 

passage with wheels in healthy condition, while 

the damaged scenario simulates a train passage 

with defective wheels. Table 3 provides details 

on the assumptions and the number of numerical 

simulations for each scenario. 

For the baseline scenarios, a total of 113 

simulations are conducted for a freight train 

composed of five wagons. Six different loading 

scenarios are considered, including (i) an empty 

train, (ii) a half-loaded train, (iii) a fully loaded 

train, and trains with unbalanced loads denoted 

as UNB1, UNB2, and UNB3. Various 

unbalanced loading configurations are described 

in the UIC loading guidelines [16], involving 

longitudinal and transverse offsets of the cargo's 

center of gravity. Furthermore, 30 simulations 

are carried out for the damaged scenarios, 

 

Figure 3. Train-track system 
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encompassing different flat characteristics. 

Within each flat length interval (L1, L2, and L3), 

ten analyses are performed while the train travels 

at a speed of 80 km/h.

 

Table 3. Damaged and undamaged scenarios 

 Baseline scenario Damaged scenario 

Train Freight – Laagrss wagon 

Number of loading schemes 6 1 (full capacity) 
Unevenness profiles 4 1 

Speeds (km/h) 40 – 120 80 

Noise ratio 5% 
Flat lengths (mm)  -                10-20 mm (L1)  

               25-50 mm (L2)  

55-100 mm (L3)  

Number of numerical analysis 100 30 

 

3. Proposed methodology for automatic 

wheel flat detection 

This methodology, designed for the 

automated detection of wheel flats [26, 27], 

operates through a sequence of five steps 

outlined in Figure 4: 

1- Sensors provide input signals for detecting 

wheel defects.  

 

Figure 4. Proposed methodology for damage detection. 
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2- The Autoregressive (AR) model is utilized for 

feature extraction from multiple sensors. During 

this phase, time series measurements are 

transformed into features that are sensitive to 

damage, resulting in significant data 

compression. 

3- The extracted features are subsequently 

normalized using the Principal Component 

Analysis (PCA) technique to eliminate 

operational variations and heighten their 

sensitivity to damage. 

4- Additionally, the Mahalanobis distance (MD) 

is applied to the modeled features to amplify the 

sensitivity to the damage further. This distance 

metric facilitates the effective fusion of features 

from each sensor, resulting in the generation of a 

damage indicator (DI) for each train passage. 

5- Finally, a statistical approach is employed to 

determine whether a wheel is in a healthy or 

defective condition. Leveraging a Gaussian 

Inverse Cumulative Distribution Function, a 

statistical Confidence Boundary (CB) is 

estimated. 

 

4. Results and discussion 

4.1. Feature extraction   

In this study, the extraction of features is 

carried out by implementing the Autoregressive 

(AR) model. A total of 40 AR parameters are 

calculated from the time series data collected by 

each accelerometer using the Akaike 

Information Criterion (AIC) technique and 

subsequently employed as features sensitive to 

damage. The application of the AR model to the 

143 scenarios results in the creation of three-

dimensional matrices sized at 143-by-40-by-8. 

The features can be categorized into two main 

groups, distinguishing between the condition of 

the train's wheels: baseline scenarios, 

encompassing the first 113 passages, and 

damaged scenarios, which include the following 

30 passages. Each damage scenario, indicative 

of wheel flat severity (ranging from low to high), 

is represented by ten indicators. 

Consequently, simulations numbered from 

114 to 123 pertain to vehicle passages with 

wheel flat lengths spanning from 10 to 20 mm 

(L1), while simulations 124 to 133 relate to 

vehicle passages featuring wheel flat lengths 

between 25 and 50 mm (L2). Wheel flat lengths 

within the range of 55 to 100 mm (L3) are 

considered in simulations 134 to 143. The 

diversity of information present in various AR 

parameters is depicted in Figure 5. For instance, 

Figure 5a identifies a specific sensitivity pattern 

for damaged scenarios, rendering the amplitude 

distinctions between scenarios with low, 

moderate, and severe damage discernible. In 

both baseline and damage scenarios (as depicted 

in Figure 5b), features with higher values exhibit 

reduced amplitude variations compared to those 

with lower values. Typically, the differentiation 

between baseline and damage scenarios is not 

straightforward due to the influence of 

environmental and operational factors. Hence, 

the subsequent section introduces the 

implementation of feature normalization.

 

Figure 5. Feature extraction 
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4.2. Feature normalization 

Enhancing the clarity of damage detection 

entails the removal of environmental and 

operational influences from the responses. 

Therefore, a matrix of features for each vehicle 

passage is generated using PCA and relies on AR 

parameters. The first two components are 

eliminated during the modeling phase due to the 

cumulative variance exceeding 80%. Figure 6 

represents two PCA features out of the 40 

available for each of the 143 scenarios, 

encompassing both undamaged and damaged 

scenarios. Given the limited distinctions 

between undamaged and damaged scenarios, the 

differentiation between a healthy and defective 

wheel becomes impractical following PCA 

implementation. Consequently, the subsequent 

section proceeds with data fusion.

 

 

Figure 6. Feature normalization 

4.3. Data fusion 

A damage index (DI) is formulated by 

merging features through the utilization of 

Mahalanobis distance (MD). MD assesses the 

degree of similarity between undamaged and 

damaged features based on their respective 

distances, with shorter distances signifying a 

higher level of similarity. Through MD, each 

sensor and vehicle passage are transformed into 

a damage-sensitive feature using the 40 AR-

PCA parameters. This process yields vectors of 

distances measuring 143 by 1 for each of the 8 

sensors. Figure 7 visually illustrates the distinct 

improvements in sensitivity exhibited by 

different sensors. Additionally, the figure 

highlights the varying degrees of sensitivity to 

damage across sensors, creating diverse damage 

indexes. 

 

4.4. Automatic wheel flat detection 

In the final step, as depicted in Figure 4, the 

proposed methodology performs automatic 

wheel flat detection by utilizing a Gaussian 

inverse cumulative distribution function to 

calculate a confidence boundary (CB). A 

threshold with a significance level of 1% is 

employed. Figure 8 illustrates the automated 
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damage detection outcomes for all 143-wheel 

conditions. The results in this figure demonstrate 

that the proposed method is exceptionally 

proficient in distinguishing between a healthy 

wheel and a defective one, achieving this 

without any false positives or false negatives.

 

Figure 8. Automatic wheel flat detection 

5. Conclusion 

The objective of developing an unsupervised 

damage detection methodology is to 

automatically differentiate between a defective 

train wheel and a healthy one. The proposed 

methodology encompasses the following steps: 

(i) data acquisition through installed sensors; (ii) 

feature extraction from the acquired responses; 

(iii) feature normalization to mitigate 

environmental and operational variations; (iv) 

data fusion to consolidate features while 

preserving wheel defect information; and (v) 

feature classification to categorize the extracted 

features into two groups: a healthy wheel or a 

defective one. Baseline and damage scenarios 

were created by manipulating input parameters 

such as train type, train loads and speeds, rail 

irregularity profile, and various wheel flat depth 

and length combinations. Notably, the 

methodology accomplished this task without a 

single false detection, effectively distinguishing 

a healthy wheel from a defective one, 

irrespective of the train type, rail irregularities, 

or train speed. Furthermore, using just one 

sensor proved sufficient for detecting a defective 

wheel. Future work will entail a field trial further 

to assess the practical utility of the developed 

technology. 

 

 

 

Figure 7. Data fusion 
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