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1. Introduction  

Dynamic impact loadings cause excessive 

vibrations in railway vehicles, which have a 

significant effect on the safety and stability of 

train operations. However, these vibrations are 

extremely hard to eliminate due to the 

complexity and diversity of railway lines and 

service environments [1]. The wheel-rail contact 

disturbances generate vibrations that travel 

through the primary suspension system to the 

bogie and then to the car body via the secondary 

suspension system, resulting in discomfort for 

the passengers [2]. This also escalates the 

operating and maintenance costs, as well as 

diminishes the safety and performance of the 

system [3]. To enhance the vibration control, 

ride comfort, safety, and performance of railway 

vehicles, active suspension is a technology that 

employs actuators to exert forces or torques on 

the vehicle body or wheelsets. Active suspension 

systems can adjust to various operating 

conditions, track irregularities, and offer 
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Active suspensions that combine conventional mechanical structures with 

advanced electronics, sensors, and controllers have enabled the 

development of railway vehicles that can meet the new demands for higher 

speed, improved ride comfort, and stricter safety standards. Nevertheless, 

these aspects are affected by low track quality or high train speed.  

Therefore, it is crucial to regulate the vibration of the vehicle's suspension 

by using advanced control and automation techniques that can optimize 

the performance of a rail car suspension system. A method to improve 

these factors under such operating conditions is active suspension control. 

Active suspension enables designers to achieve a comfort level that is 

impossible with passive suspension elements. This work introduces the 

mathematical model of a two-degree-of-freedom system and the 

implementation of a robust artificial neural network control system for the 

active suspension system of a rail car. The control system that is proposed 

comprises a robust controller, a NARMA-L2 controller, which is a type of 

neural network controller that can be used to control nonlinear systems, 

and a model neural network of the rail car's suspension system. A standard 

PID controller is also used for comparison to control the railway vehicle's 

suspension system. The simulation results indicate that the proposed 

control system has enhanced efficiency and a better outcome at adjusting 

to random track disturbances for the railway vehicle's suspension. 
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additional damping and stiffness to the vehicle 

suspension. Active suspension systems have 

been widely studied and applied in different 

forms, such as tilting trains, active secondary 

suspensions, and active primary suspensions. 

However, active suspension systems are subject 

to various challenges, such as system parameter 

and dynamic uncertainties, actuator 

nonlinearities and saturation, and track 

irregularities and external forces [4]. To cope 

with these challenges and ensure the stability and 

performance of the active suspension systems, 

robust and adaptive control methods are 

essential. 

Over recent years, the suspension of railway 

vehicles has been developed in various forms 

due to its potential to improve ride comfort and 

vehicle maneuverability [5]. Suspension systems 

have been widely applied to modern automobiles 

and rail cars with complex control algorithms to 

reduce the effects of vertical acceleration caused 

by road disturbances [6]. Other purposes of 

suspension systems are to isolate sprung mass 

from the unsprung mass vibration, to provide 

directional stability during cornering, and to 

maneuver while providing damping for the high-

frequency vibration-induced excitations [7]. 

Although the use of PID is common in industry, 

processes that dynamically involve a wide range 

of different behaviors, including suspension, 

limit the use of such a controller [8]. The 

electronically controlled active suspension 

system can potentially improve ride comfort as 

well as road handling and vehicle stability, 

especially for racing cars [9]. 

Swevers et al. have presented a flexible and 

transparent model-free control structure based 

on physical insights in the car, semi-active 

suspension dynamics used to linearize and 

decouple the system, and decentralized linear 

feedback [10]. However, recent advances in 

control and automation of control systems 

indicate significant improvement with the use of 

mechatronic applications and advanced controls 

such as PID-Fuzzy, fuzzy logic, etc. Fuzzy 

controllers, due to the lack of analytical tools 

such as stability analysis theory, control levels, 

or the same input-output relationships obtained 

by fuzzy inference systems, often face 

instability. Therefore, fuzzy systems are not 

usually used directly in control loops but rather 

to adjust control parameters, such as gains in 

proportional-integral-derivative controllers. In 

addition, in these systems, the computational 

cost as well as the response time increase 

proportionally with the size of the inputs [11]. In 

adaptive methods, in order to limit the required 

estimates, the use of adaptive techniques usually 

requires modifications. This ensures accurate 

tracking as well as asymptotic tracking even in 

the absence of perturbation [12].  

Yıldırım and Uzmay investigated the 

variation of vertical vibrations of vehicles using 

a neural network (NN) control system [13]. 

Without requiring an exact mathematical model 

of the system, neural network control can learn 

from data and adapt to uncertainties and 

nonlinearities, and it is one of the most 

promising methods for vibration control in 

railway vehicles’ active suspension systems. The 

system’s performance has improved recently by 

implementing and combining NN controllers 

with the previously mentioned controllers. 

Firstly, by investigating the conventional 

systems and using their data to train NN 

controllers, the conventional controllers were 

replaced by neural networks [14]. To estimate 

the damping forces needed under more abnormal 

conditions, such as damper aging and wear, NN 

controllers were also employed. In this strategy, 

the system response is measured and mapped to 

the actual state of the system parameters, and the 

NN controller assigns new modified adjustment 

signals to the MR damper [15]. 

Various types of NN control for active 

suspension vibration control of railway vehicles 

have been suggested by several studies, such as 

feed-forward NN [16], feedback NN [17], radial 

basis function NN [18], fuzzy NN [19], etc. 

However, the assumption of arbitrary accuracy 

in the NN approximation of the unknown system 

or controller, which may not correspond to the 

practical scenarios, is made by most of the 

existing literature on NN control. In addition, 

actuator saturation, which can harm system 

performance or stability [20], is often neglected 

in these studies. 

Robust NN control methods that can tackle 

the NN approximation errors and actuator 

saturation have been developed by some 

researchers to address these challenges. For 

instance, a robust adaptive NN control method 

for active suspension systems of maglev trains, 

which used a back-stepping technique to design 
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a controller that could overcome the NN 

approximation errors and ensure the 

boundedness of the system states, was presented 

in [21]. They also added a sliding mode term to 

deal with the external disturbances. They 

demonstrated that their method can enhance the 

levitation gap stability and ride comfort 

compared to a conventional adaptive inversion 

controller. A saturated ARC method for active 

suspension systems of road vehicles, which used 

an anti-windup block to adjust the controller in 

case of actuator saturation and ensure the 

stability and performance preservation of the 

system, was introduced in [22]. They also used 

an adaptive law to update the controller 

parameters online. They demonstrated that their 

method can reduce body acceleration, body 

displacement, tire deflection, tire force, and 

actuator force compared to a passive suspension 

system.  

Using an LMI approach, Saifi and Kumar 

[23] designed a controller that can reduce the H-

infinity norm of the system output and improve 

the robustness against uncertainties and 

disturbances by proposing a H-infinity NN 

control method for active suspension systems of 

high-speed trains. Estimating the system states 

and parameters was done by them using an 

observer. A decrease in body acceleration, body 

displacement, suspension deflection, and 

actuator force compared to a passive suspension 

system was demonstrated by their method. 

In this paper, a robust control system for 

vibration control of railway vehicles using 

NARMA-L2, based on a neural network for 

vibration control of railway vehicles, is 

proposed. The NARMA-L2 controller is a type of 

neural network controller that can be used to 

control nonlinear systems. The name NARMA-

L2 stands for nonlinear autoregressive moving 

average with exogenous inputs and second-order 

learning. The idea behind this controller is to 

transform the nonlinear system dynamics into 

linear dynamics by canceling the nonlinearities. 

This can be achieved by using a neural network 

to approximate the system model and then using 

the inverse model to compute the control input. 

The paper first describes the rail car active 

suspension for the quarter rail car model under 

consideration. Second, the proposed control 

system and standard PID controller are outlined 

in Section 3. Third, the results of the proposed 

neural-based control system and PID control 

system are shown and discussed in Section 4. 

Finally, the effectiveness of the proposed control 

method is concluded in Section 5. 

2. Model of active suspension system 

Supporting the rail car body, absorbing and 

storing energy, dissipating the vibration energy, 

and controlling the impulse from the rail that is 

transmitted to the car are the various goals of the 

suspension system of the railway vehicle, which 

is a complex mechanical system. Energy storage 

and damping components, namely springs and 

dampers, make up the suspension system. The 

rail car body is supported by the spring, and 

energy is absorbed and stored by it. The damper 

or shock absorber dissipates the vibration energy 

stored in the spring and controls the impulse 

from the rail that is transmitted to the body [22]. 

2.1. Quarter car model 

The linear quarter rail car model is shown in 

Figure 1. 

The bogie is represented by the sprung mass 

 𝑀𝑠, which is supported by two dampers and two 

springs. The dampers 𝐵𝑠 and 𝐾𝑠 model the 

suspension. The wheel mass and the weelset 

contact with the rail are represented by the 

unsprung mass 𝑚𝑢𝑠, which is supported by two 

dampers and two springs, which are modeled by 

the damper bus and the stiffness 𝐾𝑢𝑠 , 
respectively. 

 The system dynamics can be governed by the 

following equations that can be derived using 

Newton's laws [24]: 

𝑚𝑠𝑋̈𝑠 + 𝑘𝑠(𝑋𝑠 − 𝑋𝑢𝑠) + 𝑏𝑠(𝑋̇𝑠 − 𝑋̇𝑢𝑠) −

𝐹𝑐 = 0  [25]                                                     (1) 

 

Figure 1. Quarter model. 
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𝑚𝑢𝑋̈𝑢 + 𝑘𝑢𝑠(𝑋𝑢 − 𝑍𝑟) − 𝑏𝑢𝑠(𝑋̇𝑢𝑠 − 𝑍̇𝑟) +

𝑘𝑢𝑠(𝑋𝑢𝑠 − 𝑋𝑠) + 𝐶𝑠(𝑋̇𝑢𝑠 − 𝑋̇𝑠) + 𝐹𝑐 = 0 [25] 

(2)  

The bogie and the wheel have vertical 

displacements of 𝑋𝑠  and  𝑋𝑢𝑠, respectively. 𝑍𝑟  

is the input of the path disturbance and 𝐹𝑐 is the 

hydraulic actuator force. Table 1 shows the 

nominal values used in this study. 

Table 1. Quarter rail model design parameters. 

Parameter Value 

𝑚𝑠 
5,333 kg 

𝑚𝑢 
906.5 kg 

𝑘𝑠 
430,0000 N/m 

𝑘𝑢𝑠 
2,440,000 N/m 

𝑏𝑠 
20,000 Ns/m 

𝑏𝑢𝑠 
40,000 Ns/m 

The following state space shows the 

mathematical model of the active suspension: 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝑑                                        (3) 

𝑦 = 𝐶𝑥 + 𝐷𝑢                                               (4) 

 where y, u, A, B, C, and D are the output 

vector, the input vector, the state matrix, the 

input matrix, the output matrix, and the feed-

forward matrix, respectively. 

[

𝑥̇1

𝑥̇2

𝑥̇3

𝑥̇4

] = 

[
 
 
 
 

0 1 0 −1

−
𝐾𝑠

𝑀𝑠

𝐵𝑠

𝑀𝑠
0

𝐵𝑠

𝑀𝑠

0 0 0 1
𝐾𝑠

𝑀𝑢𝑠

𝐵𝑠

𝑀𝑢𝑠
−

𝐾𝑢𝑠

𝑀𝑢𝑠
−

𝐵𝑠+ 𝐵𝑢𝑠 

𝑀𝑢𝑠 ]
 
 
 
 

[

𝑋1

𝑋2

𝑋3

𝑋4

] +

 

[
 
 
 
 

 

0 0

0
1

𝑀𝑠

−1 0
𝐵𝑠

𝑀𝑢𝑠
−

1

𝑀𝑢𝑠]
 
 
 
 

[
𝑍̇𝑟

𝐹𝑐
]                                [24] 

[
𝑦1

𝑦2
] = [ 

1 0 0 0

−
𝐾𝑠

𝑀𝑠
−

𝐵𝑠

𝑀𝑠
0

𝐵𝑠

𝑀𝑠

] [

𝑋1

𝑋2

𝑋3

𝑋4

] + 

[
0 0

0
1

𝑀𝑠

] [
𝑍̇𝑟

𝐹𝑐
]                                              [24] 

 

2.2. Actuator model  

A device that can create mechanical motion 

from electrical, hydraulic, or pneumatic energy 

is called an actuator. In a train suspension 

system, an actuator can modify the suspension's 

stiffness and damping, which improves the 

comfort and stability of the train. The actuator is 

positioned between the sprung and unsprung 

masses and generates a counterforce to improve 

the system’s performance by reducing 

acceleration and suspension travel. 

 

Figure 2. Physical schematic and variables for 
the hydraulic actuator [25]. 

An electrohydraulic system consists of an 

actuator, a primary power source, a spool valve, 

and a secondary bypass valve. As seen in Figure 

2, the hydraulic actuator cylinder lies in a 

follower configuration with a critically centered 

electrohydraulic power spool valve with 

matched and symmetric orifices. Positioning of 

the spool 𝑢1directs high-pressure fluid flow to 

either one of the cylinder chambers and connects 

the other chamber to the pump reservoir. This 

flow creates a pressure difference 𝑃𝐿  across the 

piston. This pressure difference multiplied by the 

piston area 𝐴𝑝 provides the active force 𝐹𝑎 for 

the suspension system. 

𝐹𝑎 = 𝑃𝐿 × 𝐴𝑝  [25]                                              (5)                                                                                                   

The time constant of this first-class system is 

determined by experiment. 

𝑥̇𝑣 =
1

𝜏
(−𝑥𝑣 + 𝑢) [25]                                             (6)                                                                                         

In Equation (6), 𝑥𝑣 is the position of the valve, 

𝜏 is the time constant of the system, and u is the 

electric current entering the valve. 
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The change in force is proportional to the 

position of the spool with respect to the center, 

the relative velocity of the piston, and the 

leakage through the piston seals. A second input 

u2 may be used to bypass the piston component 

by connecting the piston chambers. The 

dynamics for the hydraulic actuator valve are 

given below: 

𝐹̇𝑎 = 𝐴𝑝𝛼𝐶𝑑𝜔𝑥𝑣√
𝑃𝑠−𝑠𝑔𝑛(𝑥𝑣)𝑃𝐿

𝜌
−𝐴𝑝𝛼𝐶𝑡𝑚𝑃𝐿 −

𝐴𝑝
2𝛼(𝑍̇𝑠 − 𝑍̇𝑢)    [25]                                                (7) 

In the above equation,  𝑃𝑠 is the source pressure, 

𝐴𝑝  is the piston area, ω is the width of the 

control valve, and ρ is the fluid density. 

Therefore, if the hydraulic actuator is 

considered a system, the input of this system 

will be u, and its output will be 𝐹𝑎. 

3. Control systems 

The developed NARMA-L2 control system 

and the PID controller are two different control 

structures that control the vibration of a quarter 

rail car model. The PID controller serves as a 

reference point to evaluate the effectiveness of 

the  NARMA-L2 control system. The robust 

feedback controller is designed to ensure the 

stability and robustness of the system under 

uncertainties and disturbances, while the neural 

network predictive controller is used to improve 

the performance and adaptability of the system 

by learning from the data and predicting the 

future behavior of the system. The RNN control 

system can be applied to various nonlinear and 

complex systems, such as vehicle systems, robot 

manipulators, and chemical processes. The 

following two subsections of this section present 

the developed RNN control system and the PID 

controller. Figure 3 shows the operation of the 

active suspension system and its interaction with 

various components that influence it.  

 

3.1. PID controller 

Proportional P(e(t)), integral I(e(t)) and 

derivative D(e(t)) parts make up a PID 

controller. Assuming that each amplitude is 

completely decoupled and controlled 

independently from other amplitudes, the 

following equation gives the control input F(t): 

𝐹(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝐷
𝑑𝑒(𝑡)

𝑑𝑡
         (8)                                                                     

In this equation, e(t) is the control error 

𝑒(𝑡) = 𝑥𝑑(𝑡) − 𝑥𝑎(𝑡)                                         (9)                                                                               

where 𝑥𝑑(𝑡)   is the desired response, and 𝑥𝑎(𝑡) 

is the actual response. 𝐾𝑝 is called the 

proportional gain, 𝐾𝐼 the integral gain, and 𝐾𝐷  

the derivative gain. The optimum PID gain 

parameters are determined by using the Zeigler-

Nicholds methods.  

3.2. Robust neural network (RNN) control 

system  

A robust feedback controller and a neural 

network predictive controller make up the 

proposed control system, which controls the 

vehicle system parameters. The following 

equation gives the law of the proposed controller 

systems: 

𝐹(𝑡) = 𝐹𝐹𝐵(𝑡) + 𝐹𝑁𝑁(𝑡)                                   (10)                                                                               

 

Figure 3. Workflow of an active suspension [26]. 
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where 𝐹𝐹𝐵  is the robust feedback controller's 

force, and  𝐹𝑁𝑁  is the force of the neural 

network predictive controller. 

3.2.1. Robust feedback controller 

The robust feedback controller consists of a 

proportional, integral, and derivative (PID) term 

with an exponential function added to the 

derivative term. The exponential function helps 

reduce the control error by adjusting the 

controller gain according to time. A robust 

feedback controller can be applied to various 

systems, such as vehicle suspension systems, to 

improve ride comfort and road handling. A 

simple and effective control structure that is 

commonly used in industry is the PID controller. 

However, this structure cannot reduce the 

velocity control error well because it has fixed 

gain parameters. An exponential function is 

appended to the derivative component of the 

conventional PID controller. This function 

enables an exponential decrease of e(t). A robust 

feedback controller architecture is proposed for 

this application. The following expression 

describes the first part of the control input for the 

robust feedback controller: 

𝐹𝐹𝐵(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝑡 +

𝐾𝐷
𝑑𝑒(𝑡)

𝑑𝑡
(𝐾𝑅(𝑒(−𝐾𝑅1𝑡))                           (11)                                  

The gain matrices of the robust controller part 

are 𝐾𝑃, 𝐾𝐷, 𝐾𝐼, 𝐾𝑅 and 𝐾𝑅1. The parameters 

(𝐾𝑅𝑒(−𝐾𝑅1𝑡)) are used to control the vibration 

parameters of the vehicle’s suspension for 

different road roughness. The (𝐾𝑅𝑒(−𝐾𝑅1𝑡)) 

parameters of a robust controller are obtained by 

using the method of trial and error. The 

parameters of the controller were set empirically 

after long training. 

 

3.2.2. Feedback linearization control 

(NARMA-L2) 

NARMA stands for nonlinear autoregressive 

moving average, which is a model that describes 

the relationship between the input and output of 

a system. L2 stands for linearization, which is a 

technique that transforms the nonlinear system 

dynamics into linear dynamics by canceling the 

nonlinearities. The NARMA-L2 controller can 

perform better than conventional controllers, 

such as PID, for systems with complex and 

uncertain dynamics. NARMA-L2 control, or 

feedback linearization control [27], is the name 

of this controller. Narendra [28] derived this 

model. The feedback linear controller is the 

name of this controller when the process can be 

approximated by the same form; otherwise, the 

NARMA-L2 controller would be the name of 

this controller. The main concept of this 

controller is to transform nonlinear system 

dynamics into linear dynamics by canceling 

nonlinear factors. 

4. Neural network control system 

This section describes the mobile form of the 

system model and demonstrates the neural 

network's ability to identify this model. The 

method of using the identified neural network 

model as a controller will be explained later. 

4.1. Identification of NARMA-L2 model 

The system that requires control has to be 

identified before using feedback linearization or 

NARMA-L2 control. The system's forward 

dynamics have to be represented by a neural 

network that is trained for this purpose. Thus, the 

first step is to select a model structure. That is, 

the process model under investigation has to be 

extracted, and the neural network has to be 

trained to provide the system’s forward 

dynamics. The following equation [29] shows 

the NARMA model. 

𝑦(𝑘 + 𝑑) = 𝑁[ 𝑦(𝑘), 𝑦(𝑘 − 1),… , 𝑦(𝑘 −

𝑛 + 1), 𝑢(𝑘), 𝑢(𝑘 − 1),…𝑢(𝑘 − 𝑛 + 1)] 

(12) 

Equation (13) represents the input and output of 

the system by 𝑢(𝑘) and 𝑦(𝑘). The desired data 

has to be used to train the neural network to 

approximate the nonlinear function N in the 

system identification phase. This step represents 

the identification process used in the predictive 

neural network controller. The ultimate goal is to 

make the system output follow the desired 

trajectory, or 𝑦(𝑘 + 𝑑) = 𝑦𝑟(𝑘 + 𝑑), so the next 
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step is to design a nonlinear controller as 

follows: 

𝑢(𝑘) = 𝐺[𝑦(𝑘), 𝑦(𝑘 − 1),… , 𝑦(𝑘 − 𝑛 +

1), 𝑦𝑟(𝑘 + 𝑑), 𝑢(𝑘 − 1),… 𝑢(𝑘 − 𝑚 + 1)]       

[28]                                                      (13) 

Using the above controller has the drawback that 

the control speed can be significantly impaired 

by using the backpropagation through time 

algorithm to train a neural network to 

approximate the function G and minimize the 

squared error. Narendra proposed a solution to 

this challenge, which is to use approximate 

models to represent the system. The controller 

used in this section is based on the approximate 

model NARMA-L2, which can be stated as 

follows: 

𝑦̂(𝑘 + 𝑑) = 𝑓[ 𝑦(𝑘), 𝑦(𝑘 − 1),… , 𝑦(𝑘 −
𝑛 + 1), 𝑢(𝑘 − 1),…𝑢(𝑘 − 𝑚 + 1)] +
𝑔[𝑦(𝑘), 𝑦(𝑘 − 1),… , 𝑦(𝑘 − 𝑛 + 1), 𝑢(𝑘 −
1),…𝑢(𝑘 − 𝑚 + 1)]. 𝑢(𝑘) [28]                (14) 

The above model represents the companion form 

of the system, in which the next control input u 

is absent from the system's nonlinear part. The 

companion form has the merit that the control 

signal can be determined such that the following 

consequence is accomplished: 

𝑦(𝑘 + 𝑑) = 𝑦𝑟(𝑘 + 𝑑)                           (15) 

The resulting controller will have the 

following form: 

𝑢(𝑘) =
𝑦𝑟(𝑘+𝑑)−𝑓[𝑦(𝑘),𝑦(𝑘−1),…,𝑦(𝑘−𝑛+1),𝑢(𝑘−1),…,𝑢(𝑘−𝑛+1)]

𝑔[𝑦(𝑘),𝑦(𝑘−1),…,𝑦(𝑘−𝑛+1),𝑢(𝑘−1),…,𝑢(𝑘−𝑛+1)]
     

                       [29]  (16) 

The direct use of the above equation can lead to 

challenges in the controller's feasibility because 

the above form requires the control input 𝑢(𝑘) at 

the current moment to depend on the output 

𝑦(𝑘) at the current moment. The mentioned 

difficulty can be overcome by using the 

following equation: 

𝑦(𝑘 + 𝑑) = 𝑓[𝑦(𝑘), 𝑦(𝑘 − 1),… , 𝑦(𝑘 − 𝑛 +
1), 𝑢(𝑘), 𝑢(𝑘 − 1),… , 𝑢(𝑘 − 𝑛 + 1)] +
𝑔[𝑦(𝑘), 𝑦(𝑘 − 1),… , 𝑦(𝑘 − 𝑛 + 1), 𝑢(𝑘 −
1),… , 𝑢(𝑘 − 𝑛 + 1)]. 𝑢(𝑘 + 1) [29]                 (17)                                  

In the above equation, d≥2. 

The structure of NARMA-L2 is shown in Figure 

4. 

 

Figure 4. Neural network structure. 

4.2. Robust feedback controller 

Using the NARMA-L2 model, the controller can 

be obtained as follows: 

𝑢(𝑘 + 1) =
𝑦𝑟(𝑘+𝑑)−𝑓[𝑦(𝑘),𝑦(𝑘−1),…,𝑦(𝑘−𝑛+1),𝑢(𝑘),…,𝑢(𝑘−𝑛+1)]

𝑔[𝑦(𝑘),𝑦(𝑘−1),…,𝑦(𝑘−𝑛+1),𝑢(𝑘),…,𝑢(𝑘−𝑛+1)]
   

[29]                                                            (18) 

The above equation is achievable for d≥2. 

The block diagram of the NARMA-L2 controller 

is shown in Figure 5. 

 

 

Figure 5. Active suspension control structure by 

feedback linearization controller. 

The following block diagram shows how the 

controller can be implemented using the 
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NARMA-L2 process model that was identified 

in the previous step. 

 

Figure 6. NARMA-L2 process model identified in the 

previous step. 

 

5. Simulation results and discussion 

This section compares the simulation results for 

the mentioned modes of the active suspension 

system. 

5.1. Active suspension without the use of a 

controller 

The active suspension without a controller is 

depicted in the block diagram in Figure 7. 

The response of the 𝑋𝑠 − 𝑋𝑢𝑠 function of the rail 

car’s active suspension system for a random 

track profile without any controller is illustrated 

in Figure 8. The uncontrolled response does not 

follow the desired random track profile, as 

Figure 8 indicates, due to the absence of any 

controller. 

The response of the vehicle's active suspension 

system to the random track roughness profile 

without any controller is shown by the 

simulation results of the vehicle's active 

suspension system without any controller, which 

demonstrate that the output does not precisely 

track the input when there is no controller to 

control the response, as the random changes in 

the path affect the error rate.  

Thus, a controller is necessary to achieve 

optimal tracking. In this study, two types of PID 

controllers and a NARMA-L2 controller are 

used. Their responses are compared to assess 

their relative performance. 

5.2. Control of active vehicle suspension using 

PID controller 

Using the PID controller, the performance of the 

system in the mode that was discussed in the 

previous section is investigated in this section. 

The block diagram of the active suspension 

system that uses the PID controller is shown in 

Figure 9. 

Figure 10 shows the simulation result of active 

suspension control using the PID control system 

for a random track roughness profile. The 

simulation result indicates that the response still 

cannot completely track the rail and track 

roughness, but it has much better performance 

than before when no controller was used. 

 

 

 

Figure 7. Block diagram of the suspension system without a controller. 
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Figure 9.  Block diagram of the suspension system using a PID controller. 

 

Figure 8. Uncontrolled response of  𝑋𝑠 − 𝑋𝑢𝑠 

 

 

 

Figure 10. Controlled response of  𝑋𝑠 − 𝑋𝑢𝑠 function using a PID controller. 
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5-3-Control of active vehicle suspension 

system using robust neural network (RNN) 

controller 

Using a robust neural network controller, the 

desired process for the mode that was described 

in the previous section is simulated, and each of 

their responses is examined. The rail car’s 

suspension system that uses the NARMA-L2 

control system is illustrated in the block diagram 

in Figure 11. 

The simulation results of the robust neural 

network control system for active suspension 

control against random road roughness 

characteristics are displayed in Figure 12. The 

simulation result reveals that the response is very 

favorable, and the proposed controller has been 

able to predict the rail roughness well. 

The control force applied by the neural network-

based controller is illustrated in Figure 13. The 

figure demonstrates that the controller has 

performed the control action well for the control  

parameters considered at appropriate times by 

applying the desired control force. Moreover, the 

force applied by this controller is within an 

acceptable range. 

 

 

Figure 12. Controlled response of 𝑋𝑠 − 𝑋𝑢𝑠 function using a robust neural network control system. 

 

Figure 11. Block diagram of the suspension system using a robust neural network control system. 
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6. Conclusion and discussion 

This paper proposes a control system for a 

quarter of a rail car’s active suspension system 

parameters using a neural network-based control 

system called NARMA-L2. The system is 

modeled as a two degrees-of-freedom system. 

The performance of the neural network-based 

control system is compared with that of the PID 

controller for the random road roughness profile. 

The simulation results demonstrate that the 

NARMA-L2 control system with a robust 

feedback controller can achieve high absolute 

road profile tracking performance for random 

road roughness. This confirms the effectiveness 

and robustness of the proposed neural network-

based control system. 

The standard PID controller is inferior to the 

RNN control system. This is because it has 

several drawbacks compared to other 

methods. It has robust performance, 

meaning that it can manage both linear and 

non-linear dynamics of the system by using 

an exponential function in the robust 

controller that reduces the error e(t) 

exponentially. It also has self-organization, 

meaning that it can create its own 

representation of the information it receives 

during the learning time and improve the 

control strategy. It has error tolerance, 

meaning that it can cope with faults in the 

system by distributing them in the parallel 

structure of the neural network and 

maintaining a good level of performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure13. Control force applied by a neural network-based controller.  
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