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1. Introduction  

In recent years, sustainable development in 

transportation has been considered as a solution 

to reduce air pollution and improve energy 

consumption performance. Electric vehicles 

(EVs) provide several advantages over typical 

gasoline vehicles, including less pollution in the 

air, increased energy efficiency, and a chance to 

apply a green energy economy strategy [1]. The 

predicted decrease in carbon dioxide emissions 

by electric trains until 2050 in Japan and 

England shows that electric trains may play a key 

role in minimizing greenhouse gas emissions in 

transportation by rail [2]. Electric vehicles (EVs) 

powered by batteries climbed by 63% in 2018 

over the previous year and have been growing 

rapidly over the last decade [3]. 

 

Batteries are one of the most important 

energy sources supporting transportation 

innovation. In the railway industry, which is 

mainly dependent on diesel power, batteries are 

gaining popularity as a sustainable energy source 

and an alternative to traditional diesel trains [4]. 

Battery electric trains are a new generation of rail 

vehicles that combine the advantages of electric 

trains with the ability to run on diesel routes. 

Figure 1 shows a battery-electric multi-unit 

(BEMU) test train. It is one of the globe's first 

"new generation" battery trains for passenger 

transport. A battery-electric train fleet can be 

20% less expensive than a diesel fleet, 

decreasing greenhouse gas emissions by 98% 

[5]. In addition, electric-battery trains emit the 

least noise pollution compared to other 

traditional rail vehicles [6]. 
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Batteries as a power source for electric trains have been considered due to 

a number of advantages, including flexibility, reduced air and noise 

pollution, and lower operating costs .  Estimating the lifespan of batteries 

is one of the most basic challenges to evaluating their economic 

efficiency.   This article presents a helpful life forecast of lithium-ion 

batteries in electric trains, utilizing the Adaptive Neuro-Fuzzy Inference 

System (ANFIS) to determine replacement time and economic efficiency. 

To assess battery performance in electric trains, the train dynamic model 

is simulated for one motion cycle. In this simulation, the speed profile of 

the train is considered to be constant and repeated, and then, by applying 

the current consumption of the train to the battery, the battery's life is 

predicted for a limited length of time using machine learning (ML) models. 

In the test stage, comparing the ANFIS model to other ML methods 

indicates that it outperforms all error indicators and has a higher accuracy 

for estimating battery life.  
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   Electric-battery trains make it possible to 

utilize low-cost renewable energy sources [7]. 

Electric trains can use Transportable battery-

based energy storage (TBES) to store energy 

along the route and distribute it to the grid as 

needed. This can help increase energy efficiency 

and save costs [8]. The use of battery propulsion 

systems to replace diesel engines in typical 

electric trains is considered a viable alternative. 

Recent research showed that these systems can 

replace diesel engines and increase train 

performance [9]. 

Li-ion batteries are fast gaining popularity in 

EV applications due to a number of advantages, 

including high specific energy, low self-

discharge rate, high energy density, long 

lifespan, high charge and discharge capacity, and 

high cell potential [10]. Figure 2 compares the 

energy density of several types of batteries. This 

figure shows that lithium-ion batteries have the 

highest energy density among all types of 

batteries. This makes them suitable for tensile 

applications [1]. 

 Traction batteries lose capacity with time, 

particularly with long-term use. Batteries 

deteriorate due to chemical and physical 

reactions that destroy active parts over time [11]. 

An intelligent battery management system 

(BMS) is indispensable for improving the 

performance and efficiency of EVs. Accurate 

state of health (SOH) estimates by BMS improve 

battery safety, lifespan, and dependability, 

resulting in better EV performance and 

productivity [12]. 

SOH estimate strategies may be classified 

into two types: model-based methods and data-

driven methods [13]. Model-based techniques 

describe the degradation of lithium-ion batteries 

using mathematical models. Methods based on 

models are divided into three categories: 

electrochemical model (EM) [14], equivalent 

circuit model (ECM) [15], and experimental 

model [16]. These models take into account the 

internal characteristics and degradation 

mechanisms of the battery and are partially 

dependent on the accuracy of the models [17]. 

Data-driven methods use experimental data to 

train a machine learning model to estimate SOH 

without using mathematical models. These 

models do not require detailed knowledge of the 

physical and chemical properties of the battery 

and are less sensitive to disturbances. Recent 

research results have shown that data-driven 

methods can reduce many of the disadvantages 

of model-driven methods [18]. 

Recently, deep learning networks have been 

introduced as new methods for forecasting the 

SOH of lithium-ion batteries. In reference [19], 

Long Short-Term Memory (LSTM) (LSTMs) 

are utilized to forecast the SOH of lithium-ion 

batteries for EVs. These networks estimate SOH 

Figure 1. The Alstom BEMU test train [5]. 

 

 

Fig. 2. Comparison of various batteries based on 

energy density [1]. 
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by extracting battery-related features and 

modeling the complex relationships between 

them. In reference [20], features from battery 

data are extracted using convolutional neural 

networks (CNN). These measurements include 

battery terminal voltage, charge/discharge 

current, battery temperature, and vehicle speed. 

CNN converts this data into characteristics that 

may be used to calculate battery SOH in EVs and 

hybrid vehicles. According to reference [21], the 

suggested method for estimating the SOH of 

lithium-ion batteries in EVs uses a support 

vector machine (SVR) and is more accurate and 

faster to convergence than the other two 

methods. The results show that SVR is a suitable 

choice for this application. The reference [22] 
uses the radial basis function (RBF) as the basis 

function in the hidden layer of a radial basis 

function neural network (RBFNN) to model the 

nonlinear relationships between battery features 

and SOH. Because Li-ion batteries show 

nonlinear behavior, this helps to improve SOH 

estimate accuracy. In reference [23], ANFIS was 

utilized to estimate SOH in lithium-ion batteries 

in rechargeable hybrid and electric vehicles, and 

the findings show that this technique is highly 

accurate. Reference [24] presents an ANFIS-

based method to predict SOH in an EV. The 

proposed technique consists of creating a model, 

training, and SOH estimation. 

In this paper, the combination of fuzzy logic 

and neural networks [25] is studied for the first 

time in the electric rail system for more exact 

forecasting of lithium-ion battery life. In electric 

rail systems, lithium-ion batteries are exposed to 

hard working conditions such as high charge and 

discharge currents, high temperatures, and 

vibration. These factors might cause uncertainty 

in battery performance. ANFIS is a machine 

learning method that can take this uncertainty 

into account and estimate battery life with higher 

accuracy. Due to advantages such as the ability 

to model nonlinear relationships, learn from 

incomplete data, and generalize to new data, this 

approach is a suitable and innovative alternative 

for estimating battery life in electric railway 

systems. 

The other parts of this article are organized as 

follows: Section 2 describes the object and 

content of this paper with a flowchart of the SOH 

prediction method based on the ANFIS model. 

 

Section 2.1 examines the basic theoretical 

knowledge utilized. Section 2.2 presents the 

dynamic modeling of the train. Section 3 

includes the modeling of Li-ion batteries using 

MATLAB ready-made blocks. Section 4 

explains the dataset and data processing for 

predicting the SOH of lithium-ion batteries in 

electric trains. Section 5 presents performance 

evaluation indicators. Finally, Section 6 

compares the battery life created by the 

ANFIS approach to other ML methods based on 

performance evaluation indicators. 

 

2. Method 

Machine learning algorithms for estimating 

battery life require effective estimation data, 

such as the train's voltage and current 

consumption. Dynamic model of an electric train 

is developed for a designed motion profile. The 

needed parameters are produced based on the 

controlled movement of the train; these 

parameters are applied to the battery, and the life 

of the battery is obtained for a limited period and 

finally developed. By simulating an electric train 

motion cycle, the values of voltage, current, 

duration, and battery life were obtained in that 

cycle, and considering the repeatability of the 

electric train motion cycle, the data has been 

developed for a limited period. Machine learning 

models train utilizing 80% of the data (614 hours 

equivalent to 25 days) and test with 20% of the 

data (154 hours equivalent to 7 days). Figure 3 

presents the ANFIS model, which was created 

using three input variables: voltage, current, and 

time, to predict the output variable SOH. Figure 

4 shows the flowchart of the ANFIS model-

based SOH forecast process. 

 

V batt

I batt

ANFIS SOH

 train dwell 

time

 

Fig. 3. Structure diagram of ANFIS. 
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2.1. Definition of ANFIS 

The fuzzy neural network is a hybrid 

intelligent system that combines the advantages 

of neural networks and fuzzy systems, 

outperforming either of them alone. In intelligent 

systems, fuzzy logic and RNA complement each 

other for modeling and learning. Neural 

networks are suited for processing raw data, 

while fuzzy logic is appropriate for high-level 

reasoning and decision-making  [26]. Fuzzy 

systems, on the other hand, are unable to learn 

and adapt to new conditions. However, although 

neural networks can learn, they are not obvious 

to the user.  Integrated neuro-fuzzy systems 

combine neural network parallel processing and 

learning skills with fuzzy systems' data 

presentation and human-like explanation 

capabilities to enable complex problems to be 

solved.  In light of Takagi-Sugeno fuzzy systems, 

ANFIS hybrid neuro-fuzzy systems perform 

similarly to adaptive neural networks [27]. 

Neuro-ANFIS fuzzy systems, in contrast to 

typical fuzzy systems, can adjust during the 

learning process. In some cases, after the design 

of fuzzy systems, it is possible to modify the 

fuzzy membership functions using optimization 

techniques to improve performance and adapt to 

new conditions [27]. Several references, such as 

[28] and [29], present details about the 

educational process in an ANFIS. ANFIS is 

utilized in a variety of applications, including 

control, diagnostics, prediction, and decision-

making. Figure 5 displays the ANFIS 

architecture. 

2.2. Dynamic train modeling 

The dynamic equations of a train are a 

collection of mathematical equations used to 

model train movements and analyze their 

dynamic behavior [30]. Position, velocity, and 

acceleration are the three main variables 

affecting train movement [31]. As illustrated in 

Figure 6, Newton's second law of motion [32] 

relates these variables to the forces affecting the 

train. The train's motion can be described using 

Equations (1) to (6) [33]. 

𝐹𝑇𝑟𝑎𝑐 − ∑ 𝐹𝑅 = 𝑀
𝑑𝑣

𝑑𝑡
                                    (1) 

𝐹𝑅 = 𝐹𝑟𝑟 + 𝐹𝑎𝑟 + 𝐹𝑔𝑟                                    (2) 

𝐹𝑟𝑟 = 𝑓𝑟𝑀𝑔 cos 𝛼                                           (3) 

𝐹𝑎𝑟 =
1

2
𝐶𝑤𝐴𝜌𝑣2                                                              (4) 

𝐹𝑔𝑟 = 𝑓𝑟𝑀𝑔 sin 𝛼                                           (5) 

𝐹𝑇𝑟𝑎𝑐 = 𝑓𝑟𝑀𝑔 cos 𝛼 +
1

2
𝐶𝑤𝐴𝜌𝑣2 +

𝑓𝑟𝑀𝑔 sin 𝛼 + 𝑀
𝑑𝑣

𝑑𝑡
                                         (6) 
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Fig. 4.  Flowchart of SOH prediction utilizing an 

ANFIS model. 

 

Figure 5. A general adaptive neural-fuzzy inference 

system [27]. 
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A train's dynamic equations calculate the load 

applied to the shaft of its electric motor based on 
the track's speed and gradient. Equations (7) and 

(8) can be used to determine torque and angular 

velocity given four axles per train. The inputs in 

these equations are the track's speed and slope, 

while the outputs are torque and angular 

velocity. The inclination angle of the track is 

considered zero here. 

𝑇 =
𝐹𝑇𝑟𝑎𝑐𝑟

4𝑛𝑐
                                                     (7) 

𝜔𝑤 =
𝑣

𝑟
                                                             (8) 

To describe a train's dynamic behavior, the 

equations were implemented in MATLAB. This 

model regarded train motion as a cyclic 

movement with three stages: acceleration, 

constant speed, and braking. Figure 7 depicts the 

speed profile of a train throughout a single 

operational cycle. The speed controller must 

match the train's speed to the profile as closely 

as possible. Figure 8 shows that the speed 

controller performed well, and the train's speed 

closely matched the intended profile. 

 

3. Battery modeling 

    The motion cycle of the train speed is 

controlled using the modeling described in 

Section 2.2. The electric train's speed profile is a 

repeating cycle, as are the train's voltage and 

current consumption. The repetitive cycle can be 

continuously replicated. The timeframe of this 

cycle corresponds to the time the train 

accelerates, maintains constant speed, 

decelerates, and comes to a halt at the station. 

  Battery voltage and current usage are two main 

factors that dictate the battery life span. The 

battery life decreases with increasing voltage 

and current usage. The current, voltage, and 

battery life of an electric train during a single 

stage of the repeated cycle are calculated using 

the train's features and the repetitive cycle 

depicted in Figure 9. An electric train's current 

and voltage are determined and replicated for 

each cycle until the battery's life is over. This is 

accomplished with the MATLAB Simulink 

ready-made lithium-ion battery block. Table 1 

shows battery parameter information. The 

battery's lifespan is computed based on the input 

data, and the SOH curve is presented in Figure 

10. 

Table 1. Lithium-ion battery parameters. 

Type                                        Lithium-ion 

Nominal voltage                          200 v 

Rated capacity                            1000 Ah 

Initial state of charge                   100 % 

Battery response time                   90 s 

Mg

α
 

Fig. 6. Forces affecting train motion [32]. 
 

Fig. 7. Speed profile of an electric train. 

 

 

Fig. 8. The speed of the train matches the speed profile. 
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4. Data preprocessing 

   Data preprocessing guarantees that the 

model isn't distorted by mistaken amounts, 

and it is also averaged on a regular basis to 

prevent short-term oscillations.   

Normalization is one of the important steps 

in data preprocessing. Data normalization is 

frequently utilized in deep modeling 

techniques, where it can improve model 

convergence and forecasting precision [34].  

Data normalization, by scaling the units of 

data, can improve the performance of ML 

models. 

In this article, the Min-Max method is 

utilized to normalize the data.   This method 

converts the data into the interval [0, 1]. This 

is shown in Equation (9).   

X =
x − xmin

xmax − xmin
 

(9) 

where x represents the sample data, Xmax 

represents the maximum value of the sample 

data, and Xmin represents the minimum 

value of the sample data. 

5.  Performance evaluation indicators 

Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), and R^2 are used as 

indicators to evaluate the results of the proposed 

model. RMSE and MAE assess the error 

between the predicted and real SOH curves. The 

model's accuracy will improve when these two 

error indications decrease. The R^2 criterion 

evaluates the fit between. The closer the R2 

number is to one, the greater the correlation 

between the predicted and actual values  [35]. 

The three evaluation indicators are specified as 

follows: 

RMSE = √
1

𝑛
∑ (𝑄𝑖 − 𝑄̂𝑖)2𝑛

𝑖=1   (10) 

MAE = 
1

𝑛
∑ |(𝑄𝑖 − 𝑄̂𝑖)|𝑛

𝑖=1  (11) 

𝑅2 = 1 −
∑ (𝑄̂𝑖 − 𝑄𝑖)2

𝑖

∑ (𝑄𝑖̅ − 𝑄𝑖)2
𝑖

 (12) 

Qi is the real SOH value, Q̂i is the model's 

predicted SOH value, Q̅i is the average SOH 

value of the lithium-ion battery, and n is the 

number of samples. 

 

6. Results 

A comparison of the ANFIS model with three 

other ML methods (SVR, LSTM, and RBF) is 

done in this section to show its advantages in 

battery life estimation. In the battery life 

evaluation process, the model outputs are 

evaluated to forecast the battery life. In this 

example, the training and test data are input into 

the training models to compare the results to the 

 

 

Fig. 9. The Current and voltage used by the electric 

train from the battery for one cycle. 

 

Fig. 10. Battery life for one motion cycle. 
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ANFIS model. This comparison is also depicted 

in Figures 11  and 12. 

The RBF model performed well through the 

training stage, even estimating the stairs at 

multiple points. This model performed less 

accurately in the test stage, but it estimated the 

slope. During the training stage, the SVR model 

can predict a descent slope with large-amplitude 

fluctuations. However, some domains cross the 

target chart and sit at the top of it. But throughout 

the testing phase, the model's accuracy was low, 

and it performed poorly in different situations. 

However, the slope is estimated with a bias 

below the target chart. In the training stage, the 

LSTM model is put below the target model, and 

after several iterations, it has crossed the target 

curve but detected the slope. In the test stage, 

with several repetitions from the chart, it fell 

below the target chart, and on the 27th day, it 

moved away from the top of the chart.   The 

ANFIS model performed well in the training 

stage, forecasting the slope with a limited 

oscillation range. It is better in the testing phase, 

and while there are fluctuations, they are very 

 

Figure 11. Comparing the output of the trained models with the training data. 

 

 

Figure 12. Comparing the output of the trained models with the testing data 
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near the target chart.   Figures 11 and 12 show 

graphic comparisons of the models. However, 

accuracies cannot be discerned by the eye. To 

correctly compare the outputs of these models, 

the criteria explained in Section 5 were used. The 

results of this comparison are presented in Table 

2. 

As shown in Table 2, the ANFIS model's 

RMSE and MAE evaluation indices throughout 

the training and testing stages are lower than 

those of other models. This matches the results 

presented in Figures 11 and 12. In the testing 

stage, the ANFIS model has a higher R2 index 

compared to other models. 

The ANFIS model, which combines neural 

networks with fuzzy logic capabilities, 

outperforms the RBF model.   The RBF model 

operates well in the training phase but weakly in 

the testing phase. In the test phase, the RMSE 

index of the RBF model is 12 times higher than 

that of the ANFIS model. During the R2 index 

test phase, the RBF model outperforms the 

ANFIS model by less than 0.001%. 

Figures 13 and 14 include bar graphs 

comparing the performance of machine learning 

models based on error indicators in the training 

and testing stages.  In the testing stage, the RMSE 

and MAE values for the ANFIS model are 

3.5217×10−6and 3.08×10−6. This is less than 

other models, making it the most efficient model 

among them. In the test stage, the value of R2 is 

Table 2. Comparison of model structure. 

Test Train 

 

RMSE MAE R2 RMSE MAE R2 

5.2939e-05 2.8681e-05 0.64903 6.0617e-05 2.9246e-05 0.55852 SVR 

4.4416e-05 3.1531e-06 0.77376 1.1163e-06 8.7012e-07 0.99985 RBF 

1.7017e-05 1.45e-05 0.9617 1.7983e-05 1.51e-05 0.96162 LSTM 

3.5217e-06 3.08e-06 0.96267 1.0609e-06 8.20e-07 0.99979 ANFIS 

 

 

 

 

Fig.13 Comparison of Machine Learning models based on error parameters in the training phase. 
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equal to 0.96267, showing that the ANFIS model 

shows a higher correlation between predictions 

and actual values than other models. 

 

7. Conclusion 

Considering the safety and dependability of 

lithium-ion batteries in electric trains, this paper 

proposes an ANFIS model for predicting the 

SOH of lithium-ion batteries.  The ANFIS model 

utilizes fuzzy logic to account for the uncertainty 

in the performance of lithium-ion batteries, 

resulting in an accurate estimation of their SOH. 
The ANFIS model receives three inputs: time, 

voltage, and current, while the output is an 

estimate of the battery's remaining life. 

The study on lithium-ion battery SOH 

forecasting shows that the ANFIS model 

outperforms other ML methods in terms of 

RMSE and MAE in both training and testing 

stages. In the training stage, the RMSE of the 

ANFIS model is 1.0609×10−6, and the MAE is 

8.20×10−7. In the testing stage, the RMSE is 

3.5217×10−6 , and the MAE is 3.08×10−6. This 

advantage indicates that the ANFIS model 

predicts the SOH of lithium-ion batteries more 

accurately than other ML methods. 

The proposed method's high accuracy in 

estimating battery lifespan can help accurately 

estimate the time of battery replacement, 

reducing battery replacement costs and 

improving train useful life. 

 

 

List of symbols  

A Projected frontal area of the vehicle /train. 

𝐶𝑤 Drag coefficient. 

𝐹𝑡𝑟𝑎𝑐 Tractive force. 

𝐹𝑅 Resistive forces. 

𝐹𝑟𝑟 Rolling Resistive force. 

𝐹𝑎𝑟 Aerodynamics drag force. 

𝐹𝑔𝑟 Gradient force due to slope/inclination of the rail. 

G Acceleration due to gravity (9.81 m/s2 ). 

M Effective mass of the train. 

𝑛𝑐 Numbers of cars of the train. 

R Radius of the train’s wheel. 

𝑓𝑟 Rolling resistance coefficient. 

v Imposed train velocity. 

Α Inclination angle. 

Ρ Air density. 

 

Fig.14 Comparison of Machine Learning models based on error parameters in the testing phase. 
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