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ARTICLE INFO ABSTRACT
Article history: Given the significant role of the railway sector in transportation, railway
Received: 07.12.2023 managers and operators place great importance on traffic and maintenance
Accepted: 10.10.2023 costs. While existing track wayside monitoring systems can detect

geometric defects in train wheels, like flats, they do not provide a severity
assessment. To address this limitation, the WAY4SafeRail project aims to
enhance rail safety by assessing the condition of train wheels. As an initial
Keywords: step in employing Artificial Intelligence Techniques, this paper presents a
artificial intelligence portion of the research conducted within the WAY4SafeRail project,
specifically focusing on numerical simulations of wheel defects, in
particular wheel flats. The proposed methodology has demonstrated its
wheel flat reliability and cost-effectiveness in identifying wheel defects.
train-track dynamic interaction
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damage detection

wayside condition monitoring

1. Introduction illustrates the challenge of inspecting 80 wheels
o ) individually.

Wheel flats result from the friction occurring . )
between the wheel and the rail on railway ~ Furthermore, relying solely on visual
vehicles [1]. If a wheel flat occurs, it could |nspect|or_15 often resu_lts in missed wheel flats
potentially damage the bogie mechanism, and continued operation of damaged wheels.
affecting the vehicle's stability during operation Consequently, this approach diminishes work
and overall riding comfort [2]. As a result, it is efficiency and shortens the wheelset's lifespan.
essential to conduct corrective maintenance To address this issue, it becomes imperative to
when wheel flats occur. Typically, railway implement  condition-based  maintenance,
maintenance personnel inspect wheel flats enhancing work efficiency and prolonging wheel
visually, one by one. However, consider a lifespan. Additionally, railway vehicles incur
standard train consisting of 10 units; this maintenance costs of hundreds of millions of

dollars annually. Therefore, the systematic
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application of condition-based maintenance is
expected to reduce overall life cycle costs [3].

Randall [4] conducted a study on vibration
signals originating from both rotating and
reciprocating machinery, including abnormal
signals identified during analysis. Gao et al. [5]
introduced a technique for diagnosing wheel flat
defects in rail vehicles, which relied on detecting
vertical changes caused by these defects using
the Parallelogram Mechanism. Liang et al. [6]
applied time-frequency methods to detect wheel
flats, while Yang et al. [7] successfully
employed supervised learning to identify rail
defects. Chandra et al. [8] used unsupervised
learning to detect rail clamp defects. Bosso et al.
[9] devised a method to detect wheel flat defects
by measuring vertical acceleration on the axle
box, with validation through simulations and
testing. Initially, the wheel flat index algorithm
could detect small flats and estimate their
severity. Mosleh et al. [10, 11] proposed a
method to differentiate between a defective and
healthy wheel based on the envelope spectrum
technique.

In recent decades, various onboard and
wayside systems have been suggested for
detecting wheel defects during train operations
[12, 13]. Several onboard technologies utilize
vibration, acoustics, image detection, and
ultrasonics [9]. Achieving a complete diagnosis
of wheel conditions and effective management
necessitates equipping all wheels with sensors.
However, this approach is infrequently
employed due to its high cost and maintenance
challenges. As an alternative, wayside
measurement systems are employed to identify
wheel flats because they assess all wheels as
trains pass [2, 14, 15].

While numerous publications have addressed
railway defect detection, the available literature
on automatic early wheel flat detection is, to the
authors' knowledge, quite scarce. Most of the
proposed wheel flat detection techniques do not
possess the capability to automatically
differentiate a defective wheel from a healthy
one. Moreover, the majority of the studies
mentioned above rely on multiple sensors to
make this distinction. This research introduces
an automatic method for detecting wheel flats
using an unsupervised learning approach,
utilizing just a single sensor installed on the rail.

The current paper presents a segment of the
research conducted within the WAY4SafeRail

project, specifically focusing on numerical
simulations of wheel defects. The primary
objectives of this project are twofold: firstly, to
enhance the assessment of railway wheel
conditions during operation by monitoring and
categorizing the severity of wheel issues, and
secondly, to improve the safety of wvehicle
operations by detecting instability situations,
such as unbalanced loads and the hunting
movement, through the application of robust
artificial intelligence technigques to measurement
data. A notable advantage of this methodology
lies in its capacity to increase railway track
availability and lifespan while simultaneously
reducing maintenance costs. The proposed
approach has proven to be a dependable and
cost-efficient means of identifying wheel
defects.

2. Numerical modeling
2.1. Modeling of vehicle

The present research investigates the Laagrss
freight train, which comprises five wagons.
According to the UIC classification, this train is
capable of reaching a maximum speed of 120
km/h [16]. Figure 1 represents a double freight
wagon with a weight of 27 t and a carrying
capacity of 52 t. To create a 3-D multibody
dynamic model that accounts for suspensions in
all directions, ANSYS® [18] is employed. This
model employs spring-damper and mass-point
elements to represent mass and inertia at the
center of gravity for each wagon component and
connects these components using rigid beams.
The mechanical and geometric properties of the
vehicle are summarized in Table 1. Further
details regarding the numerical model of the
freight wagons can be found in the work of
Braganca et al. [19].
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Figure 1. Modeling of the vehicle
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Table 1. Mechanical and geometric properties of

the vehicle
Parameter Symbol (unit) Adopted value
Carbody
Mass mep (t) 411
Roll moment of inertia | I, (t.m?) 49
Pitch moment of inertia | Iy, (t. m?) 673
Yaw moment of inertia | I, (t.m?) 665
Length Ly (m) 10000
Wheelset
Mass m,, (kg) 1247
Roll moment of inertia | I, (kg.m?) 312
Yaw moment of inertia | 1, , (kg.m?) 312
Suspensions
Longitudinal stiffness ky, (KN/m) 44981
Lateral stiffness ky, (kN/m) 30948
Vertical stiffness k;, (kN/m) 1860
Vertical damping ¢y, (kN.s/m) 16.7

2.2. Modeling of the track

Montenegro et al. [20] have developed a finite
element model of the track using ANSYS® [18].
Figure 2 illustrates this model, replicating the
ballast, sleepers, and rails through a multi-layer
approach. The railpads, positioned between the
sleepers and the rail, are represented as spring
elements that connect the sleepers and the rail.
Beam elements depict the rails and sleepers, with
suitable material properties assigned to each.
Discrete mass points represent the ballast.
Additionally, to consider foundation flexibility,
spring-dashpot elements are integrated. Table 2
provides a description of the track model, while
further details about the numerical model of
freight wagons can be found in Mosleh et al.
[10].

Fastner interface iz Foundation

Figure 2. Modeling of the track

Table 2. Mechanical properties of the track

Parameter Symbol (Unit) | Value
A, (m?) 7.67 x 107*
oy (kg.m?) 7850
Rail I, (m%) 30.38
" x 1076
E, (N/m?) 210 x 10°

kpx (N/ m) 20 x 10°

Rail pad, longitudinal
Cpx (N.s/m) 50 x 103

kpy (N/m) | 20 x 10°

Rail pad, lateral
Cp,y (N.s/m) 50 x 103

ky, (N/ m) 500 x 10°

Rail pad, vertical
Cp, (N.s/m) 200 x 10°

Sleeper ps (N/ m) 2590
kp, (N/ m) 900 x 103
Cpx (N.s/m) 15 x 102

Ballast, longitudinal

kp,y (N/ m) 2250 x 103

Ballast, lateral
Cpy (N.s/m) 15 x 103

kp, (N/ m) 30 x 106

Ballast, vertical
Cp, (N.s/m) 15 x 103

Foundation, longitudinal | kg, (N/ m) 20 x 10°
Foundation, lateral kg, (N/ m) 20 x 10°
Foundation, vertical ke, (N/ m) 20 x 10°

2.3. Track irregularity

Actual railway tracks exhibit minor
imperfections in their rails. Despite the small
scale of these irregularities, their impact on the
interaction between wheels and rails should not
be underestimated [21]. Consequently, rail
unevenness profiles are created within
wavelength ranges from 1 m to 75 m, aligning
with the D1 and D2 wavelength intervals defined
in the European Standard EN 13848-2 [22].
Additionally, Power Spectral Density (PSD)
curves are formulated based on real-world data
to generate artificial unevenness profiles. For
further details on how these unevenness profiles
are generated, please refer to Mosleh et al. [15].

2.4. Wheel flat profile

In this study, the second wheel of the third
wagon on the left side is designated as a
defective wheel. A uniform statistical
distribution examines various combinations of
flat wheel depths (D) and flat wheel lengths (L).
Three categories are considered for defective
wheels with different flat lengths (L): low (L1),

International Journal of Railway Research (IJRARE) 11
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medium (L2), and severe (L3). The lower and
upper limits of the wheel flat length for each
interval are determined by the uniform
distributions U (10, 20), U (25, 50), and U (55,
100). The wheel flat depth (D) is calculated
using the following equation:

= ToRw @)

In addition, the vertical profile of a wheel flat
is determined as follows, where Rw represents
the wheel's radius, and L denotes the length of
the flat:

D 21X
7 = _E (1 - COST>.H(X - (ZTERW - L))'

0 <x< 2mRy (2

2.5. Train track interaction

To replicate the dynamic interactions
between trains and tracks, the authors have
developed a proprietary software known as VSI
- Vehicle-Structure Interaction Analysis. This

Vehicle model

software's validation and comprehensive
description are available in prior publications
[23], where it has been applied in various
contexts [11, 20]. Employing a 3D wheel-rail
contact model, the normal contact forces are
computed using Hertzian theory, while the
tangential forces arising from rolling friction
creep are determined using the USETAB
routine. MATLAB® [17] serves as the
numerical tool for importing the structural
matrices of vehicles and tracks, which were
previously modeled via finite element analysis
(FE). In ANSYS® [18], as previously explained,
both subsystems are initially modeled
separately, and the VSI software combines them
using a fully coupled approach (see [23]).
Further details regarding the interaction between
the train and track can be found in the authors'
prior publications [10, 11, 24, 25]. Figure 3
illustrates the numerical model. Wheel flat
detection is achieved by installing eight
accelerometers along the track, with four sensors
on the right side and four sensors on the left side,
all positioned on the rail between two sleepers.

Train speed Vv

Track model / Track irregularities Wheel rail contact model Defective wheel

ANSY S| Matlab

Matlab

Figure 3. Train-track system

2.6. Damaged and undamaged scenarios

In the context of the current study, two
scenarios are examined to test and validate the
automatic wheel flat detection method:
undamaged (baseline) wheels and damaged
wheels. The baseline scenario simulates a train
passage with wheels in healthy condition, while
the damaged scenario simulates a train passage
with defective wheels. Table 3 provides details
on the assumptions and the number of numerical
simulations for each scenario.

For the baseline scenarios, a total of 113
simulations are conducted for a freight train
composed of five wagons. Six different loading
scenarios are considered, including (i) an empty
train, (ii) a half-loaded train, (iii) a fully loaded
train, and trains with unbalanced loads denoted
as UNBI1, UNB2, and UNB3. Various
unbalanced loading configurations are described
in the UIC loading guidelines [16], involving
longitudinal and transverse offsets of the cargo's
center of gravity. Furthermore, 30 simulations
are carried out for the damaged scenarios,
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encompassing different flat characteristics. ten analyses are performed while the train travels
Within each flat length interval (L1, L2, and L3), at a speed of 80 km/h.

Table 3. Damaged and undamaged scenarios

Baseline scenario Damaged scenario
Train Freight — Laagrss wagon
Number of loading schemes 6 1 (full capacity)
Unevenness profiles 4 1
Speeds (km/h) 40-120 80
Noise ratio 5%
Flat lengths (mm) - 10-20 mm (L1)

25-50 mm (L2)
55-100 mm (L3)

Number of numerical analysis 100 30
3. Proposed methodology for automatic operates through a sequence of five steps
wheel flat detection outlined in Figure 4:
This methodology, designed for the 1- Sensors provide input signals for detecting
automated detection of wheel flats [26, 27], wheel defects.
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Figure 4. Proposed methodology for damage detection.
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2- The Autoregressive (AR) model is utilized for
feature extraction from multiple sensors. During
this phase, time series measurements are
transformed into features that are sensitive to
damage, resulting in significant data
compression.

3- The extracted features are subsequently
normalized using the Principal Component
Analysis (PCA) technique to eliminate
operational variations and heighten their
sensitivity to damage.

4- Additionally, the Mahalanobis distance (MD)
is applied to the modeled features to amplify the
sensitivity to the damage further. This distance
metric facilitates the effective fusion of features
from each sensor, resulting in the generation of a
damage indicator (DI) for each train passage.

5- Finally, a statistical approach is employed to
determine whether a wheel is in a healthy or
defective condition. Leveraging a Gaussian
Inverse Cumulative Distribution Function, a
statistical Confidence Boundary (CB) is
estimated.

4. Results and discussion
4.1. Feature extraction

In this study, the extraction of features is
carried out by implementing the Autoregressive
(AR) model. A total of 40 AR parameters are
calculated from the time series data collected by
each accelerometer using the Akaike
Information Criterion (AIC) technique and

subsequently employed as features sensitive to
damage. The application of the AR model to the
143 scenarios results in the creation of three-
dimensional matrices sized at 143-by-40-by-8.
The features can be categorized into two main
groups, distinguishing between the condition of
the train's wheels: baseline scenarios,
encompassing the first 113 passages, and
damaged scenarios, which include the following
30 passages. Each damage scenario, indicative
of wheel flat severity (ranging from low to high),
is represented by ten indicators.

Consequently, simulations numbered from
114 to 123 pertain to vehicle passages with
wheel flat lengths spanning from 10 to 20 mm
(L1), while simulations 124 to 133 relate to
vehicle passages featuring wheel flat lengths
between 25 and 50 mm (L2). Wheel flat lengths
within the range of 55 to 100 mm (L3) are
considered in simulations 134 to 143. The
diversity of information present in various AR
parameters is depicted in Figure 5. For instance,
Figure 5a identifies a specific sensitivity pattern
for damaged scenarios, rendering the amplitude
distinctions between scenarios with low,
moderate, and severe damage discernible. In
both baseline and damage scenarios (as depicted
in Figure 5b), features with higher values exhibit
reduced amplitude variations compared to those
with lower values. Typically, the differentiation
between baseline and damage scenarios is not
straightforward due to the influence of
environmental and operational factors. Hence,
the subsequent section introduces the
implementation of feature normalization.

15 T T T T T T T T
| |
| |
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Figure 5. Feature extraction

* Corresponding author

Email address: amosleh@fe.up.pt


file:///C:/Users/up202202392/Desktop/paper/amosleh@fe.up.pt
http://dx.doi.org/10.22068/ijrare.322
https://ijrare.iust.ac.ir/article-1-322-en.html

[ Downloaded from ijrare.iust.ac.ir on 2026-02-19 ]

[ DOI: 10.22068/ijrare.322 |

Smart detection of wheel defects using artificial intelligence and wayside monitoring system

4.2. Feature normalization

Enhancing the clarity of damage detection
entails the removal of environmental and
operational influences from the responses.
Therefore, a matrix of features for each vehicle
passage is generated using PCA and relies on AR
parameters. The first two components are
eliminated during the modeling phase due to the
cumulative variance exceeding 80%. Figure 6

represents two PCA features out of the 40
available for each of the 143 scenarios,
encompassing both undamaged and damaged
scenarios. Given the limited distinctions
between undamaged and damaged scenarios, the
differentiation between a healthy and defective
wheel becomes impractical following PCA
implementation. Consequently, the subsequent
section proceeds with data fusion.

1 5 T T T T T T T T
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Train passages

*  Baseline = Damage (L1)

e Damage (L2) >

Damage (L3)

Figure 6. Feature normalization

4.3. Data fusion

A damage index (DI) is formulated by
merging features through the utilization of
Mahalanobis distance (MD). MD assesses the
degree of similarity between undamaged and
damaged features based on their respective
distances, with shorter distances signifying a
higher level of similarity. Through MD, each
sensor and vehicle passage are transformed into
a damage-sensitive feature using the 40 AR-
PCA parameters. This process yields vectors of
distances measuring 143 by 1 for each of the 8
sensors. Figure 7 visually illustrates the distinct
improvements in sensitivity exhibited by
different sensors. Additionally, the figure
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highlights the varying degrees of sensitivity to
damage across sensors, creating diverse damage
indexes.

4.4, Automatic wheel flat detection

In the final step, as depicted in Figure 4, the
proposed methodology performs automatic
wheel flat detection by utilizing a Gaussian
inverse cumulative distribution function to
calculate a confidence boundary (CB). A
threshold with a significance level of 1% is
employed. Figure 8 illustrates the automated
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damage detection outcomes for all 143-wheel
conditions. The results in this figure demonstrate
that the proposed method is exceptionally

proficient in distinguishing between a healthy
wheel and a defective one, achieving this
without any false positives or false negatives.

Accelerometer 1
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Figure 7. Data fusion
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Figure 8. Automatic wheel flat detection

5. Conclusion

The objective of developing an unsupervised
damage detection methodology is to
automatically differentiate between a defective
train wheel and a healthy one. The proposed
methodology encompasses the following steps:
(i) data acquisition through installed sensors; (ii)
feature extraction from the acquired responses;
(iii)  feature normalization to mitigate
environmental and operational variations; (iv)
data fusion to consolidate features while
preserving wheel defect information; and (v)
feature classification to categorize the extracted
features into two groups: a healthy wheel or a
defective one. Baseline and damage scenarios
were created by manipulating input parameters

such as train type, train loads and speeds, rail
irregularity profile, and various wheel flat depth
and length combinations. Notably, the
methodology accomplished this task without a
single false detection, effectively distinguishing
a healthy wheel from a defective one,
irrespective of the train type, rail irregularities,
or train speed. Furthermore, using just one
sensor proved sufficient for detecting a defective
wheel. Future work will entail a field trial further
to assess the practical utility of the developed
technology.
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