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1. Introduction  

In recent years, investment in optimizing 

train speed profiles with the aim of reducing 

energy consumption in public transportation 

systems has greatly increased. Proper energy 

management in public transportation, especially 

railways and metros, not only leads to significant 

savings at a macro level but also allows for the 

optimization and updating of train schedules 

through intelligent movement. The effort to 

achieve an optimal speed profile is actually a 

type of optimization problem that seeks to reach 

an appropriate speed profile. One of the effective 

ways to achieve energy efficiency is to optimize 

train performance and subsequently optimize 

train speed profiles through movement 

 

International Journal of 

Railway Research 

                 

 

Optimizing Railway Energy Consumption with Multiple-Phase Optimal Control Method 

  

Fatemeh Bakhshi1, Mohammad Ali Sandidzadeh2*, Saeed Ebadollahi3  

1MSc. Student, School of Railway Engineering, Iran University of Science & Technology 

2Associate Professor, School of Railway Engineering, Iran University of Science & Technology 

3Assistant Professor, School of Electrical Engineering, Iran University of Science & Technology 

ARTICLE INFO  A B S T R A C T 

Article history:  

  Received: 08.04.2023 

  Accepted: 09.17.2023 

  Published: 09.20.2023 

 

 

In many countries, railways, including intercity, urban railway (metro), 

tram, monorail, and other lines, have played a vital role in passenger and 

freight transportation in the past. The problem of optimizing energy and 

reducing air pollution has always been a very important issue in 

transportation systems. Given that trains are faster and more accessible for 

passenger and freight transportation and consume less energy compared to 

other public transportation vehicles, the use of railway lines has gained 

significant attention from many countries, individuals, and various 

companies. Nowadays, with the limitation of resources, the importance of 

optimal energy consumption has received a lot of attention from 

researchers, and various methods have been proposed in this regard. As is 

well known, trains travel on railway lines based on speed profiles and 

control tables designed by the interlocking system, which have a close 

relationship with energy consumption. In recent years, investment in 

providing methods for designing train speed profiles with the aim of 

optimizing energy consumption in railway transportation systems has 

increased. There are various methods for optimizing speed profiles, among 

which the use of optimal control theory can be mentioned. In this article, 

the multiple-phase optimal control theory has been used to design train 

speed profiles. First, the train movement is divided into several phases 

based on the route layout, and then for each phase, dynamic equations and 

cost functions have been written to optimize energy consumption. In the 

next step, the solution to this multiple-phase problem will be done using 

pseudo-spectral methods and the GPOPS software. Finally, the designed 

speed profile for trains has been used for the Tehran-Mashhad path in the 

Abardej-Kavir section, and the level of energy consumption and 

optimization using this method has been discussed and investigated. 
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strategies. Even if each train saves a negligible 

amount of energy during operation, the total 

operating costs of the rail network are 

significantly reduced.  

Research in this field has so far focused on 

using optimal control theory to find the optimal 

trajectory for the train (speed profiles in terms of 

position and position in time during travel), 

which results in safe and real-time train 

operations, passenger comfort, and reduced 

energy consumption [1]. The problem of 

optimizing train energy consumption is 

considered as an optimal control problem and is 

then addressed by using existing methods to 

solve this problem, resulting in the optimization 

of train speed, which leads to rail traffic 

efficiency. Specifically, this article examines 

two important aspects: train trajectory 

optimization and the scheduling problem for 

energy efficiency. 

In fact, the problem of this article is an 

optimal control problem. To solve this, the 

movement of the train will first be modeled. To 

model the train movement, all factors affecting 

the movement of the train, including resistance 

forces, the effects of signaling systems on 

movement, and other relevant factors, are 

considered to obtain an accurate model of the 

train movement. In the next step, the optimal 

control problem will be written for the train 

movement. The optimal control problem for 

train movement is generally described as an 

energy consumption optimization problem when 

the train travels a predetermined distance from 

0x  to fx  within a predetermined time interval 

from 0t  to ft . Therefore, a cost function will be 

written, taking into account the boundary 

conditions of the problem along with all the 

constraints and limitations governing the 

problem. 

Optimal control problems can also be 

expressed as multi-phase problems. That is, the 

time interval of the problems is formed by 

combining several small sequential time 

intervals. Each of these sub-intervals can be 

considered an independent optimization 

problem. However, there are connections 

between the state and control variables within 

the initial and final stages of each phase, which 

leads to the integration of the overall problem. 

These phases can be either fixed or free [2]. 

Using this method, the optimal control problem 

for train movement is transformed into a multi-

phase optimal control problem. This is because 

the train path has various gradients and different 

speed constraints. Each phase of the optimal 

control problem for train movement has its own 

dynamic constraints, path constraints, boundary 

conditions, and cost function. The optimal 

trajectory or optimal speed profile will be 

obtained by minimizing the sum of the cost 

functions of each phase. 

After expressing the optimal control problem 

for train movement as a multiple-phase optimal 

control problem, the next step is to solve it. 

There are various methods for solving this 

problem. For example, Pontryagin's maximum 

principle can be used to find optimal movement 

strategies. However, this method leads to the 

solution of differential and integral equations 

and requires a lot of time for analysis processes. 

In this article, a direct addressing method is used 

to solve the optimal control problem. First, the 

optimal control problem for the train is 

transformed into a nonlinear programming 

problem using discrete pseudo-spectral methods, 

and then a gradient-based optimization solver in 

the Gauss Pseudospectral Optimization Software 

(GPOPS) is used to solve the nonlinear 

programming problem. 

So far, extensive research has been conducted 

on reducing energy consumption in rail 

transportation, among which the most important 

ones include the use of neural networks and 

genetic algorithms [3], fuzzy control [4], and 

optimal control theory [5]. 

Optimization algorithms for speed profiles 

not only reduce energy consumption during 

travel but also help achieve the timetable goals 

of train movements [6]. Optimizing the train 

speed profile is also called train trajectory 

optimization (TTO). The optimized trajectory is 

the basis for automatic train operation systems to 

control train movements, as well as the basis for 

guidance systems for train operators to provide 

recommendations for speed and control regimes 

so that the train can move safely and efficiently 

[7]. 

Methods for solving the problem of 

optimizing the train trajectory, and specifically 

the speed profile of the train, can be divided into 

two categories: indirect methods and direct 

methods. Indirect methods solve the problem 

indirectly by transforming the optimal control 

problem into a boundary value problem. Direct 
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methods find the optimal solution by converting 

the continuous-time optimization problem into a 

nonlinear programming problem (NLP). 

Researchers who focus on indirect methods are 

interested in solving differential equations to a 

large extent, while researchers who focus on 

direct methods use optimization approaches to 

solve the problem. The Pontryagin maximum 

principle (PMP) is an example of an indirect 

method [8].  

2. Literature review 

Research conducted on the TTO issue aims to 

optimize the unique movement of a train. The 

Pontryagin maximum principle is widely used to 

analyze the optimal control strategy for 

achieving energy efficiency in train movement 

[9]. 

In 1980, Milroy conducted his doctoral thesis 

in the field of automatic control aspects of trains. 

This included new work in the area of train 

navigation strategies. Based on Pontryagin's 

maximum principle, he demonstrated that for 

short trips, such as those occurring in metro 

systems, an appropriate strategy for minimal 

energy movement consists of three stages shown 

in Figure 1 [5]: 

• Initial maximum acceleration; 

• Coasting; and 

• Maximum braking. 

 

 

Figure 1. Optimal movement with three steps 

 

After research conducted by Milroy, in 1982, 

research on the optimal motion strategy was 

continued by one of the graduates of the same 

college, Kim Taylor, and one of the students of 

the mathematics department, David Lee, under 

the supervision of Milroy. In 1982, they obtained 

four states for the problem of optimal control of 

a train on a long journey on a railroad without 

gradient, with sufficient complementary time for 

the trip, according to the principle of 

Pontryagin's maximum [10]. 

This motion strategy consists of the following 

stages and is shown in Figure 2: 

• Initial maximum acceleration; 

• Constant speed; 

• Coasting; and 

• Maximum braking. 

 

 

Figure 2. Optimal movement with four steps 

After this research, according to the four 

modes obtained, the goal of most train control 

algorithms is to obtain optimal switching points 

between these modes [5]. 

In 1996, Howlett, in 2000, Khmelnitsky, and 

in 2003, Liu and Golovitcher concluded that for 

the movement of a train on a path with speed 

limitations and different gradients, the optimal 

control strategy is a sequence of states in which 

the transition points from one state to another 

depend on speed and gradient constraints [11-

12]. 

In 2016, Albrecht et al. found that finding 

optimal switching points is a challenging 

problem, except in cases where the train's 

movement path has only one speed constraint 

and the crossing path is without gradients [13]. 

Another approach to solving the TTO 

problem is based on discretizing the continuous 

optimal control model into a nonlinear 

programming model, and then nonlinear 

programming solvers are directly employed to 

solve the problem. Recently, this approach has 

been applied to solve the train trajectory (TTO) 

problem and has shown some advantages and 

superiority compared to the PMP method [14]. 

Among the methods that have low 

computational time, direct methods are included. 

Direct methods convert the optimal control 

problem into a mathematical programming 

problem. Wang et al. in 2013 and Goverde et al. 

in 2016 redefined the problem as a multiple-
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phase optimal control problem and solved it 

using pseudo-spectral methods, in which the 

Legendre pseudo-spectral method was employed 

to discretize continuous optimal control 

problems into multiple-phase optimal control 

problems [15].  

In this paper, each phase of the problem is 

solved independently. Then, each phase is 

connected through continuity conditions 

between the independent variables, states, and 

controls. 

The advantages of this method are that if the 

optimal solution for a desired phase is not 

obtained for any reason, different methods can 

be implemented and compared. After 

discretization by the Legendre pseudo-spectral 

method, the problem is transformed into a 

nonlinear programming problem, which has a 

good structure. Finally, for the implementation 

and solution of this problem, the GPOPS 

software, based on MATLAB, has been used 

[16]. 

The direct method has a significant advantage 

over the indirect method due to not requiring an 

explicit integration process. For this reason, in 

this article, this method has been employed. 

 

3. Train movement modeling 

According to Newton's second law and 

according to the forces applied to the moving 

train, equation (1), which is the dynamic 

equation of train movement, is written as 

follows: 

 
( )

( ) ( ( ) ( ) ( ))a

ma Forces

F F t R v G x B t Ma

=

= − + + =



                                                                       (1) 

where Fa is the accelerating force, F(t) is the 

momentary traction force applied to the train, 

R(v), G(x), and B(t) are the Davis force, the 

resistance force due to the gradient of the path 

at location x, and the instantaneous braking 

force applied to the train. M is the mass of the 

train and a  is the acceleration of the train. 

  According to Newton's second law 

mentioned above and also considering that the 

independent variable of this problem is time and 

the position and speed of the train are dependent 

variables, which are represented by x(t) and v(t), 

respectively, the movement of the train is written 

as equation (2). 

( ) ( )

1
( ) ( ( ) ( ) ( ) ( ))

x t v t

v t F t B t R v G x
M

=



= − − −


      (2) 

And here the simple and basic modeling of 

the train ends. 

 

3.1. Multiple-phase movement and using the 

pseudo-spectral method 

Since the goal is to solve the optimal control 

problem of multiple-phase train movement, the 

train motion model presented in the previous 

section must be rewritten as a multiple-phase 

optimal control problem. The advantage of this 

model is that it includes time, speed, and 

gradient limits precisely. 

In the multiple-phase optimal control model, 

the train path is divided into phases. Each section 

of the complete path is called a phase, with each 

phase of the optimal control problem having its 

own cost function, dynamic model, path 

constraints, and specific boundary conditions. 

The complete path is obtained by connecting the 

phases through connection conditions. 

The total cost function is the sum of the cost 

functions of each phase. Ultimately, the optimal 

trajectory can be obtained by minimizing the 

total cost function along with all its constraints 

and connection conditions. 

Since the speed and gradient constraints 

along the railway path are changing, the 

complete train path is divided into several 

sections based on the points where the gradient 

and speed change. Therefore, each phase of the 

train movement has its own specific speed 

constraint and, as a result, its own specific line 

resistance (gradient resistance) and train 

resistance (Davis resistance). In this section, the 

equations of the multiple-phase optimal control 

problem are written. 

It is assumed that the general problem has P 

phases and the start and end times, the control 

variables, and the state of the p-th phase are 

indicated by 
( )

0

pt ,
( )p

ft ,
pu , and 

( )px   , 

respectively, where 1,2,...,p P= . In this case, 

the cost function is given by equation (3). 
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( )

( )
0

( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

1

( ) ( ) ( )

mi n [ ( ( ), , ( ), )

( ( ), ( ), ) ]

p
f

p

P
p p p p p p p

f f

p

t

p p p

t

J x t t x t t

x t u t t d t





=

= +



          (3)                                        

where the conditions for connecting the phases 

to each other are in the form of relation (4). 

( ) ( 1) ( ) ( ) ( 1) ( 1)

0 0 = ,   ( ) ( ),

1,..., 1

p p p p p p

f ft t x t x t

p P

+ + +=

= −              (4)                           

    The location, speed, traction force, and 

braking force of the n-th train at time t in phase 

p are determined by equations (5), respectively. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ), ( ),

( ), ( )

p p p p

n n n n

p p p p

n n n n

x x t v v t

F F t B B t

= =

= =
                              (5)                 

The cost function of the problem of reducing 

energy consumption is presented as equation 

(6). 

 

 

( )

( )
0

2min ( ) ,   n 1,2,...,

,   1,2,...,

p
f

p

t

p

n N p P t

u t d t N

p P

 

=

=

  
             (6) 

Now, to use the pseudo-spectral method, first 

a new independent variable is defined instead of 

the independent variable t, and the relationship 

between the new independent variable and t is 

given by equation (7) [17-18]. 

( ) ( ) ( ) ( )

0 0

2 2

p p p p

f ft t t t
t 

− +
= +

                           (7) 

Now, the multiple-phase optimal control 

problem, which was written in terms of the 

variable t, is rewritten in terms of the variable 

[ 1,1] = − , and equation (8) is obtained. 

( ) ( ) ( ) ( )

0

1

( ) ( ) 1
0 ( ) ( ) ( ) ( ) ( )

0

1

m i n [ ( 1 ) , , ( 1 ) , )

( ( ) , ( ) , ; , ) ]
2

P
p p p p

f

p

p p

f p p p p p

f

J t x t

t t
x u t t d



    

=

−

= − +

−





   (8)                               

Finally, the phase connection conditions to 

each other are written as equation (9).   

( ) ( 1)

0

( ) ( ) ( 1) ( 1)

0

( ) ( ) ( 1) ( 1)

0

( ) ( ), , p {1,..., 1}

( ) ( )

p p

f

p p p p

n f n

p p p p

n f n

t t

x t x t n P

v t v t

+

+ +

+ +

 =


=   −


=
                                                                      (9) 

 

4. Simulations and Results 

In this section, energy optimization will be 

performed for two motion modes, single-phase 

and three-phase, using the method and equations 

described in the previous section, and then they 

will be compared. 

4.1. Single-phase motion 

This section considers a problem in which 

two trains move according to a pre-designed 

timetable, which is provided in Table (1). The 

first and third nodes are the origin and the 

destination stations, respectively, and the second 

node is the intersection point [15]. 

D and A, respectively, indicate the time of 

departure and arrival of the train. 

 

Table 1. Timetable for two trains in single-phase 

movement mode 

Train Number 
D time from 

node 1 

A time at 

node 3 

1 08:00 08:35 

2 08:05 08:40 

 

Since the travel time for both trains is the 

same, both trains have the same specifications, 

and their departure times are far enough apart 

that the two trains do not interact with each 

other, so the limit of separating the two trains 

can be omitted. As a result, the same optimal 

control strategies are considered for both trains. 

Therefore, this problem becomes an optimal 

control problem for a single train with one phase, 

in which the train travels a route of 80 km in 

2100 seconds. 

Imagine that the positions of the nodes are in 

order at 1 0X = , 2 40X km= , and 3 80X km=

. It is worth mentioning that in this problem, 

there is no stop at the intermediate node because 
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it is assumed that both trains move according to 

a predetermined timetable and neither of them 

suffers any delays. Therefore, there is no need 

for overtaking at the intermediate node. The 

maximum speed that a train can have is 180 

kilometers per hour, and its mass is assumed to 

be 600 tons. The traction force of the train is a 

maximum of 140 kilonewtons, and it can brake 

with a maximum force of 200 kilonewtons. 

 

Figure 3. Diagram of train location in single-

phase motion mode 

 

By employing the pseudo-spectral method 

described in the previous section, the location 

diagram obtained in the single-phase motion of 

the train is illustrated in Figure 3. 

Furthermore, the speed diagram with respect 

to the train's position is depicted in Figure 4. 

 

Figure 4. Train speed diagram in single-phase 

motion mode 

Finally, the diagram related to the train input 

(gas or brake), or, in other words, the train 

control diagram in the single-phase mode using 

the pseudo-spectral method, is drawn in Figure 

5. The amount of energy consumption in this 

case is equal to
81.7950 10 J . 

 

Figure 5. Train control diagram (optimal input) in 

single-phase motion mode 

4.2. Three-phase motion 

In this scenario, the motion of a single train 

with three stations is simulated, where the 

middle node in the previous section is considered 

the second station. According to the equation 

2N(S-1), where S is the total number of nodes 

and N is the total number of trains, the number 

of events in this scenario is four, therefore this 

problem is a three-phase problem. The first 

phase involves the train's movement from the 

origin station to the intermediate station, at a 

distance of 40 kilometers from the origin station. 

After reaching the second station, the train stops 

for 50 seconds and then continues its movement 

until it reaches the destination station (the third 

station) after covering a distance of 80 

kilometers. Therefore, the optimal control model 

for this problem, along with its constraints, is as 

follows [15]: 

1025 10752 2
minimize ( ) ( )

1 2
0 1025

2100 2
( )

3
0

t t
J u t dt u t dt

t t

t
u t dt

t

= =
= + + 

= =

=

=

      (10)                        

The dynamic equations related to the first and 

second phases are: 

 
( ) ( )

( ) ( ) ( ) ( ) ( )

 v , 1,3

1
v ( ( ) ( ) ( ) ( )),  p=1,3

p p

p p p p p

x p

F t B t R v G x
M

 = =



= − − −


                                                                     (11) 
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with the following path restrictions: 

( )

( )

( )

0 140

0 200,  p=1,3

0 180

p

p

p

F

B

v

  


 


                                   (12)                                                      

The dynamic equations of the second phase 

and boundary conditions are: 

( ) ( )

( )

0
, 0, 0,

0

0

p p

n n

p

n

x
v F

v

B

=
= =

=

=

                        (13) 

 

The conditions for connecting phases to each 

other are: 

( ) ( 1)
0

( ) ( ) ( 1) ( 1)
( ) ( ), , p {1, ..., 1}

0

( ) ( ) ( 1) ( 1)
( ) ( )

0

p p
t t
f

p p p p
x t x t n Pn nf

p p p p
v t v tn nf

+
=

+ +
=   −

+ +
=









 (14)  

Now, in MATLAB software, the optimal 

movement strategy is obtained using the pseudo-

spectral method. 

 

Figure 6. The location time graph 

Figure 6 clearly demonstrates the three-phase 

motion. The first phase is the movement to the 

second station; the second phase is the stop at the 

second station; and the third phase is the 

movement to the final station. The optimal speed 

profile is obtained as follows: 

 

 

Figure 7. The speed location graph 

As indicated, the train has come to a stop at 

the 40-kilometer mark, which means it has 

reached the station. The control graph is as 

follows: 

 

Figure 8. The control location graph 

4.3. Optimal movement on the Abardej-Kavir 

railway line 

The Abardej and Kavir stations are located on 

the Tehran-Mashhad railway line. To achieve 

optimal train movement between these two 

stations, real data such as maximum allowable 

speed, dispatch times, and the gradient of this 

path have been used. The designed optimal 

speed and control are shown in the following 

figures: 
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Figure 9. The speed location graph 

According to the designed speed profile, it is 

evident that using the pseudo-spectral method, 

the train motion consists of four phases: 

maximum acceleration, constant speed, coasting, 

and maximum braking. In fact, based on the four 

optimized motion regimes extracted from the 

PMP principle, which leads to energy 

optimization, the train moves. It is worth 

mentioning that this speed profile has only been 

designed for a time duration of 32.12 seconds, 

which is significantly reduced compared to other 

lengthy and complicated methods. 

 

Figure 10. The control location graph 

Using the pseudo-spectral method, an energy 

consumption level of 
6204.1452 10 J  has 

been obtained, which has resulted in a 15% 

energy saving compared to the optimization 

performed through previous methods such as 

reducing the maximum speed. 

 

 

5. Conclusion 

In this article, the optimization method of 

pseudo-spectral, which is among the direct 

collocation methods, was used to generate a 

speed profile with the goal of optimizing energy 

consumption. Initially, an optimal control 

model of train motion was obtained, and then 

the train motion was divided into multiple 

phases based on path and speed constraints. For 

each phase, an optimal control model along 

with its specific constraints was formulated. 

After writing the equations related to multi-

phase optimal control, this problem was 

discretized using the pseudo-spectral method 

and transformed into a nonlinear programming 

(NLP) problem. 

The next step was implementing the 

problem in GPOPS software and solving the 

discretized problem using NLP solvers. The 

results obtained from adopting this method 

indicate that it has a significantly higher 

convergence speed compared to other 

optimization methods and also leads to more 

effective energy savings. 

The weakness of this method is its relatively 

low accuracy compared to other methods. For 

example, when a part of the path has a negative 

gradient, the traction force does not decrease 

sufficiently to prevent the train from accelerating 

in the coasting phase. However, increasing the 

number of time nodes and mesh points can 

largely overcome this weakness. 
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