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1. Introduction  

The advent of electric trains revolutionized 

transportation, offering efficient, 

environmentally friendly, and often high-speed 

travel options. Central to the functionality of 

electric trains is the precise control of their 

speed, a critical aspect that ensures safety, 

efficiency, and passenger comfort [1]. Electric 

trains also produce fewer environmental 

pollutants [2].  Speed control mechanisms in 

electric trains have undergone significant 

advancements over the years, driven by 

technological innovations and the pursuit of 

optimal performance. 

Electric train speed control refers to the 

sophisticated systems and mechanisms designed 

to regulate the velocity of trains powered by 

electric traction motors. Unlike traditional 

diesel-powered locomotives, electric trains rely 

on electricity for propulsion, typically obtained 

from overhead lines or third rails. This reliance 

on electrical power enables more precise and 

responsive speed control, allowing for smoother 

acceleration, deceleration, and maintenance of 

desired speeds. 
 

The importance of speed control on electric 

trains cannot be overstated. It directly impacts 

factors such as energy efficiency, braking 

effectiveness, and passenger comfort. Efficient 

speed control systems not only optimize energy 

consumption but also contribute to the overall 

safety and reliability of train operations [3]. 

Additionally, in high-speed rail networks, 

precise speed control is essential for maintaining 
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Automatic speed control of electric trains is always a matter of attention 

due to reasons such as safety, travel comfort, and, most importantly, 

preventing human errors. In order to achieve this goal, the dynamic models 

of the train and electric motor will be estimated and then simulated. Based 

on the simulated model and the desired objectives, the controller will be 

designed by an experienced engineer. During this process, the simulated 

state space models always encounter errors. Additionally, the controller 

design process will be conducted offline.  Thus, the issue will be addressed 

by incorporating a state feedback controller and formulating the Bellman 

equation for reference signal tracking.   In order to obtain the state 

controller parameters, the policy is initially evaluated and subsequently 

improved. This iterative process will continue until the termination 

conditions are met. In this process, there is no need for a dynamic model 

of the system, and the controller parameters will be obtained solely through 

interaction with the environment. Therefore, even with changes in the train 

dynamics, the controller will be updated online. The proposed method for 

determining the values of state feedback parameters will be juxtaposed 

with other artificial intelligence techniques, including particle swarm 

optimization, genetic algorithm, and bees algorithm. Evaluation metrics 

such as root mean square error, coefficient of determination (R-squared), 

and explained variance will be employed to assess the performance of 

these algorithms. The results obtained underscore the superior efficacy of 

the proposed method. 
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schedules and ensuring timely arrivals and 

departures. 

Over the years, various technologies have 

been developed to enhance electric train speed 

control. These include advanced propulsion 

systems, sophisticated onboard computers, and 

automated signaling systems. Furthermore, 

innovations in regenerative braking systems 

allow electric trains to recover and utilize energy 

during deceleration, further improving 

efficiency and reducing environmental impact 

[4]. 

This introduction sets the stage for exploring 

the intricacies of electric train speed control, 

delving into the principles, technologies, and 

challenges involved. As we delve deeper, we 

will uncover the mechanisms that govern the 

smooth and efficient movement of electric trains, 

driving progress in modern transportation 

systems. 
 

The benefits of the railway system have been 

mentioned. In this system, speed control plays a 

significant role in preventing accidents, energy 

consumption, travel comfort, and traffic 

management. Human error in controlling train 

speed can result in significant disruptions and 

dreadful accidents within railway systems [3]. 

Such errors may arise from inappropriate actions 

by the train driver, train control system operator, 

or other human-related factors. Some examples 

of human errors in train speed control include: 
 

1. Speed Non-Compliance: The train 

driver intentionally or inadvertently 

does not adhere to the prescribed speed 

limits for the track. This can lead to 

unforeseen accidents and be preventable 

[5]. 

2. Loss of Focus: The train control system 

operator, due to a lack of attention to 

their responsibilities, may incorrectly 

manage the train's speed. This loss of 

focus can be a result of fatigue, human 

shortcomings, or psychological issues 

[6]. 

3. Decision-Making Errors: In some 

instances, incorrect decisions are made 

by responsible individuals. This may 

involve making wrong decisions 

regarding speed, applying brakes when 

not necessary, or failing to make 

decisions in emergency situations. 

4. Use of Drugs or Alcohol: The 

consumption of drugs or alcohol by 

drivers or train operators can lead to 

poor decision-making and a reduction in 

decision-making abilities. 

5. Fatigue: Inappropriate fatigue can 

impair concentration and decision-

making abilities. Fatigued drivers or 

train operators may fail to properly 

control the train's speed. 
 

For the reduction of human errors in train 

speed control, modern tools and technologies, 

such as automatic train control (ATC) systems 

and train traffic management systems, are 

commonly utilized. These systems can 

effectively minimize errors made by train drivers 

and operators, ensuring the correct control of 

train speeds. Additionally, continuous training 

and safety education for individuals engaged in 

train control and traffic management are highly 

crucial. 

 

Extensive research has been carried out in 

the field of automatic speed control for electric 

trains, and we will now explore some of these 

studies in further detail. In their study [7], Wang 

focused on the speed control of trains using a 

sliding mode proportional integral derivative 

(PID) controller. After analyzing and comparing 

various existing research methods, the neural 

network and sliding mode control techniques 

were carefully chosen and integrated into the 

train's speed control system. Jiaxin Li et al. 

propose a verification method for the simulation 

of a semi-physical train operation control theory. 

The method is based on an intelligent mobile 

robot [8]. In order to optimize the performance 

of the control system for Permanent Magnet 

Synchronous Motors (PMSM), an improved 

Model Predictive Control (MPC) scheme based 

on neural networks is proposed in [9]. In [10], 

the paper presents novel techniques aimed at 

reducing the occurrence of pole-slipping induced 

by control systems, along with a cost-effective 

detection and recovery scheme for magnetic 

drive-trains (MDTs). Boudallaa proposes the 

speed control of an asynchronous motor (AM) 

using the H∞ Antiwindup design in his paper 

[11]. Paper [12] presents a fuzzy controller for 
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tracking specified speed characteristics while 

maintaining a smooth ride for a passenger 

vehicle within a predetermined speed range. A 

genetic algorithm is employed to tune the 

performance of the fuzzy controller by adjusting 

its parameters, including scaling factors and 

membership functions. One of the simplest 

methods employed in [13] can be mentioned, 

where the genetic algorithm is utilized to 

estimate the control parameters of a PID 

controller for train speed control. 
 

It was previously mentioned that there is a 

possibility of an error occurring in the control of 

the electric train speed by the human operator. 
Additionally, the automatic control of the train 

speed was studied using the usual methods. The 

aforementioned approaches require the use of a 

system's dynamic model for designing the 

controller. However, calculating the dynamics of 

the system is frequently accompanied by errors. 

As a result, this research aims to control the 

speed of the electric train using reinforcement 

learning. Therefore, by considering the state 

feedback controller and utilizing the Q-learning 

method, the control parameters will be 

calculated without the need for calculating the 

system's dynamic equations. 

In Section 2, a general approach is presented 

for solving the problem. First, a dynamical 

system of the train is simulated, and then general 

explanations regarding state feedback control 

will be provided in Section 2.2. Section 2.3 will 

describe the fundamentals of reinforcement 

learning. Section 3 focuses on the design of the 

controller using reinforcement learning. Section 

3.1 presents the equations related to state 

feedback control, and Section 3.2 elaborates on 

the equations for designing the controller using 

reinforcement learning. Moreover, in Sections 

3.3 and 3.4, respectively, other artificial 

intelligence methods and evaluation metrics 

have been introduced.  Section 4 is dedicated to 

the results, and Section 5 concludes the paper. 
 

 

2. Approach 

      In this section, the dynamic model of the 

train is initially constructed to simulate the 

problem environment. Indeed, the dynamic 

model is utilized to apply a load to the electric 

motor. Finally, the state feedback controller and 

reinforcement learning will be studied for 

controlling the direct current motor. 
 

 

2.1. Train dynamics 

     According to Newton's second law and the 

provided diagram, the dynamic equations of the 

train's motion will be represented by Equations 

1-8 [14], [15]. 

 

 

Figure 1. Schematic of the train's motion on an 

incline and the forces influencing its motion. 

  

𝐹𝑇𝑟𝑎𝑐 − ∑𝐹𝑅 = 𝑀
𝑑𝑣

𝑑𝑡
 (1) 

𝐹𝑅 = 𝐹𝑟𝑟 + 𝐹𝑎𝑟 + 𝐹𝑔𝑟 (2) 

𝐹𝑟𝑟 = 𝑓𝑟𝑀𝑔 cos𝛼 (3) 

𝐹𝑎𝑟 =
1

2
𝐶𝑤𝐴𝜌𝑣2 (4) 

𝐹𝑔𝑟 = 𝑓𝑟𝑀𝑔sin𝛼 (5) 

𝐹𝑇𝑟𝑎𝑐 = 𝑓𝑟𝑀𝑔 cos𝛼 +
1

2
𝐶𝑤𝐴𝜌𝑣2

+ 𝑓𝑟𝑀𝑔sin𝛼 + 𝑀
𝑑𝑣

𝑑𝑡
 

(6) 

𝑇 =
𝐹𝑇𝑟𝑎𝑐𝑟

4𝑛𝑐
 (7) 

𝜔𝑤 =
𝑣

𝑟
 (8) 

 

     Using these equations, the motor load is 

determined. Figure 1 illustrates the forces 

applied to the train in motion. 

2.2. State feedback control 
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     State Feedback Control is a control method in 

systems that adjusts the control input based on 

the system state information. It utilizes the state 

information of the system to regulate the control 

input [16]. In this method, the system's state is 

measured by sensors or other methods, and then 

the control input is applied to the system based 

on this state information. In state feedback 

control, a control weighting matrix called the 

state feedback gain matrix is used. This matrix is 

designed using various techniques, such as pole 

placement or the linear quadratic regulator 

(LQR) method. By appropriately setting the state 

feedback gain matrix, it is possible to achieve 

improved performance and more precise control 

of the system. By changing the values of the state 

feedback gain matrix, the system's 

characteristics can be altered, allowing for 

reaching desired outputs [17]–[19]. The state 

feedback control schematic is depicted in Figure 

2. 
 

 

Figure 2. Schematic of a system with state 

feedback control. 

2.3. Reinforcement learning 

     Reinforcement learning is a machine learning 

method that is based on the interaction of an 

agent with its environment. In this approach, an 

agent or machine is expected to learn how to act 

in order to achieve a specific goal through 

interacting with its environment. The primary 

objective of reinforcement learning is to improve 

and optimize the agent's actions in the 

environment. There are various methods for 

reinforcement learning, including algorithms 

such as Q-Learning, SARSA, and Temporal 

Difference [20]. Specifically, in this research, we 

will use reinforcement learning to control the 

speed of an electric train [21]. The process of 

controlling the speed of an electric train using 

reinforcement learning is illustrated in Figure 3. 

The actions of the agent are the control signals 

that are applied to the environment. Through 

interaction with the environment, the agent 

learns which control signal or action to apply in 

each state. 

 

 

Figure 3. State feedback control process through 

reinforcement learning. 

 

3. Train speed controller 

     In this section, the state space model of the 

electric train motor is first calculated. Taking 

into account the state feedback controller, the 

intended state space is considered the 

environment in the learning process. The agent, 

which is the system's controller itself, interacts 

with the environment to carry out the learning 

process, which will be further elaborated upon. 

 

3.1. State space of an electric motor 

     In this section, the state space equations of the 

electric train motor are considered as in Equation 

9. The specifications and values of the 

parameters used are provided in Table 1. 

 

𝐴 =  

[
 
 
 
−𝑅

𝐿⁄ 0
−𝐾𝑏

𝐿⁄

0 0 1
−𝐾𝑡

𝐽⁄ 0 −𝐵
𝐽⁄ ]
 
 
 
 

(9) 

𝐵 = [

1
𝐿⁄

0
0

] 

𝐶 = [0 0 1] 

𝐷 = 0 
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Table 1. Parameters of an electric motor. 

Parameter Value Unit 

𝑅 0.5 𝑂ℎ𝑚 

𝐿 0.003 𝐻 

𝐵 0.01 𝑁.𝑚. 𝑠 

𝐽 0.0167 𝑘𝑔.𝑚2 

𝐾𝑡 0.8 𝑁.𝑚/𝐴𝑚𝑝 

𝐾𝑏 0.8 𝑉 𝑟𝑎𝑑 𝑠⁄⁄  

 

     The equations for simulating the environment 

have been introduced. To ensure confidence, the 

step response of the system is depicted in Figure 

4, and the controllability matrix has been 

computed, indicating that the system is 

controllable. 

𝑐𝑛𝑡𝑟𝑏

= [
3.33 × 102 −5.55 × 104 5.001 × 106

0 0 1.596 × 104

0 1.596 × 104 −2.67 × 106

] 

 

 
Figure 4. Step response of the system. 

3.2. Controller 

     The general overview of control systems 

controlled by closed-loop controllers is 

illustrated in Figure 5. In order to tune the 

controllers, the system dynamics are typically 

computed, and the controller is designed 

accordingly. However, in many systems, the 

dynamic model is either unavailable or its 

estimation is prone to errors. Moreover, the 

process of controller design and its 

implementation is often performed offline. To 

design an optimal adaptive controller without the 

need for a dynamic model (model-free) and 

online, the Q-Learning technique can be utilized. 

By having the Q-function, the optimal policy can 

be determined without relying on the system 

model. The function 𝑄ℎ(𝑥𝑘 , 𝑢𝑘) specifies the 

value associated with taking action 𝑢𝑘 in state 

𝑥𝑘. In other words, if the system is in state 𝑥𝑘, 

the controller performs action 𝑢𝑘, and this 

control action represents how optimal the control 

is. Equation 10 illustrates how 𝑄ℎ(𝑥𝑘 , 𝑢𝑘) is 

computed. 

 

(10) 𝑄ℎ(𝑥𝑘, 𝑢𝑘) = 𝑟(𝑥𝑘 , 𝑢𝑘) + 𝛾𝑉ℎ(𝑥𝑘+1) 

(11) ℎ∗(𝑥𝑘) = argmin
𝑢

(𝑄∗(𝑥𝑘 , 𝑢)) 

     In Equation 11, ℎ∗(𝑥𝑘) indicates that for a 

certain range of values for 𝑢, 𝑄 becomes 

optimal. By taking the derivative of Equation 10 

with respect to 𝑢𝑘, in other words, for which 

action the maximum reward is obtained, the 

optimal policy can be computed. The optimality 

equation for the Q-function, known as the 
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Figure 5. Controller diagram 
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Bellman equation, is expressed by the following 

equation: 

(12) 𝑄∗(𝑥𝑘 , 𝑢𝑘) = 𝑟(𝑥𝑘 , 𝑢𝑘) + 𝛾𝑉ℎ(𝑥𝑘+1) 
     The Bellman equations for the Linear 

Quadratic Regulation (LQR) problem are 

defined as a second-order function of the state 

and action, as follows: 

(13) 

𝑄𝑘(𝑥𝑘, 𝑢𝑘) = 𝑥𝑘
𝑇𝑄𝑥𝑘 + 𝑢𝑘

𝑇𝑅𝑢𝑘 

+𝑥𝑘+1
𝑇 𝑃𝑥𝑘+1 = 𝑥𝑘

𝑇𝑄𝑥𝑘 + 𝑢𝑘
𝑇𝑅𝑢𝑘 

+(𝐴𝑥𝑘 + 𝐵𝑢𝑘)𝑇𝑃(𝐴𝑥𝑘 + 𝐵𝑢𝑘) 

(14) 

𝑄𝑘(𝑥𝑘, 𝑢𝑘) 

= [
𝑥𝑘

𝑢𝑘
]
𝑇

[
𝑄 + 𝐴𝑇𝑃𝐴 𝐵𝑇𝑃𝐴

𝐴𝑇𝑃𝐵 𝑅 + 𝐵𝑇𝑃𝐵
] [

𝑥𝑘

𝑢𝑘
] 

= 𝑍𝑘
𝑇𝐻𝑍𝑘  

(15) 𝐻̅𝑇𝑍̅𝑘 = 𝑥𝑘
𝑇𝑄𝑥𝑘 + 𝑢𝑘

𝑇𝑅𝑢𝑘 + 𝐻̅𝑇𝑍̅𝑘+1 

(16) 𝐻̅𝑇𝑍̅𝑘 − 𝐻̅𝑇𝑍̅𝑘+1 = 𝑥𝑘
𝑇𝑄𝑥𝑘 + 𝑢𝑘

𝑇𝑅𝑢𝑘 

(17) 𝑄𝑘(𝑥𝑘, 𝑢𝑘) = [
𝑥𝑘

𝑢𝑘
]
𝑇

[
𝐻𝑥𝑥 𝐻𝑥𝑢

𝐻𝑢𝑥 𝐻𝑢𝑢
] [

𝑥𝑘

𝑢𝑘
] 

(18) 𝜕𝑄𝑘(𝑥𝑘 , 𝑢𝑘)

𝜕𝑢𝑘
= 0 

(19) 
𝐻𝑢𝑥𝑥𝑘 + 𝐻𝑢𝑢𝑢𝑘 = 0 

→ 𝑢𝑘 = −(𝐻𝑢𝑢)−1𝐻𝑢𝑥𝑥𝑘 

     Equation 13 represents the Bellman 

optimality equation, where the state equations 

for 𝑥𝑘+1  are substituted. This equation is then 

simplified in Equation 14 to obtain the form 

shown in Equation 15. In this context, 𝐻̅ refers 

to 𝑉𝑒𝑐(𝐻) , and 𝑍̅  denotes the Kronecker 

product. After simplification in Equations 16 and 

17, the derivative with respect to 𝑢 can be taken, 

and the parameter values for 𝐾  can be 

determined. In this case, where 𝐻 includes the 

parameters of the system's dynamic equations, it 

is obtained through interaction with the 

environment and the technique of least squares.  

     The pseudocode for executing a controller to 

control the speed of an electric train is provided 

in Table 2: 

Table 2. Proposed algorithm. 

Initializations: 

Itr : total iterations 

M : must bigger than H̅s  

parameters 

K : state feedback 

% Calculate T, B1, C1 and Q1  For 

% constructing Bellman equations  

T = [
A 0
0 1

] 

B1 = [
B
0
] 

C1 = [C −1] 

Q1 = C1TQC1 

% Main Loop to Calculate K 

For i=1:Itr-1 

 

ϕ : consider as empty 

ψ : consider as empty 

For k=1:M             

  

uk = −Kxk 

xk+1 = Txk + B1uk 

uk+1 = −Kxk+1 

Attach ϕ as row : 

Z̅ ([
xk

uk
]) − γZ̅ ([

xk+1

uk+!
]) 

Attach ψ as row :  

xk
TQ1xk + uk

TRuk 

 

End 

H̅ = (ϕTϕ)
−1

ϕTψ 

% Compute H from H̅ 

% Compute Hux and Huu from H 

K = (Huu)
−1Hux 

% Termination Criteria 

If ‖(Kj − Kj−1)‖ < 10−5 : 

  Break 

 End 

End  
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3.3. Machine learning methods 

     In this section, machine learning algorithms 

will be reviewed to find the parameters of the 

feedback controller. 

 

3.3.1. Particle swarm optimization (PSO)  

      Particle swarm optimization (PSO) is a 

computational technique used for optimization 

problems. It is inspired by the social behavior of 

birds flocking or fish schooling. In PSO, a 

population of candidate solutions, called 

particles, moves through the search space to find 

the optimal solution. Each particle adjusts its 

position based on its own experience (local best) 

and the collective experience of the swarm 

(global best). Through this iterative process, 

particles converge towards the optimal solution 

[22].  

 

3.3.2. Genetic algorithm (GA) 

     Genetic algorithm (GA) is a heuristic 

optimization technique inspired by the process 

of natural selection and genetics. It operates by 

mimicking the principles of evolution, where 

candidate solutions, often represented as 

chromosomes or strings of parameters, undergo 

selection, crossover, mutation, and reproduction 

to produce offspring solutions iteratively. The 

fitness of each solution determines its likelihood 

of being selected for reproduction, with fitter 

solutions having a higher chance of passing their 

genetic material to the next generation. Over 

successive generations, the population evolves, 

and through the process of natural selection, 

increasingly better solutions are generated [23].  

 

3.3.3. Bee Algorithm (BA) 

     The Bee Algorithm is a nature-inspired 

optimization algorithm that mimics the foraging 

behavior of honeybee colonies. In this algorithm, 

three main types of bees are simulated: 

employed bees, onlooker bees, and scout bees. 

Employed bees exploit the search space by 

visiting neighboring solutions; onlooker bees 

select solutions based on the information shared 

by employed bees; and scout bees explore new 

areas of the search space [24]. 

     The algorithm starts with an initial population 

of solutions, represented as food sources, and 

iteratively improves these solutions to find the 

optimal solution. Employed bees search for food 

sources in their vicinity and evaluate their 

quality using a fitness function. Onlooker bees 

choose food sources to visit based on the waggle 

dance information shared by employed bees. 

Scout bees randomly search for new food 

sources when the employed and onlooker bees 

cannot find better solutions. 

     Through the collaboration between 

employed, onlooker, and scout bees, the 

algorithm efficiently explores the search space 

and converges towards the optimal solution. The 

Bee Algorithm has been successfully applied to 

various optimization problems, including 

engineering design, scheduling, and data 

clustering. 

 

3.4. Metrics 

     There are several metrics commonly used to 

evaluate algorithms, depending on the nature of 

the problem being solved and the goals of the 

optimization process. Some of the key metrics 

mentioned for the problem include the 

following: 

 

3.4.1. Root mean squared error (RMSE) 

    Root mean squared error (RMSE) is a widely 

used metric for evaluating the accuracy of 

predictive models, particularly in regression 

analysis. It measures the average magnitude of 

the differences between predicted values and 

observed values. 

     Mathematically, RMSE is calculated as the 

square root of the average of the squared 

differences between predicted and observed 

values: 
 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2
𝑛

𝑖=1
 (20) 

Where: 

 

- 𝑛 is the number of observations; 
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- 𝑦𝑖 is the observed value for the 𝑖th observation; 

and 

- 𝑦̂𝑖 is the predicted value for the 𝑖th 

observation. 

     RMSE provides a measure of how accurately 

the model's predictions match the observed data. 

It is preferred because it penalizes larger errors 

more heavily than smaller errors, making it 

sensitive to outliers and providing a more 

comprehensive assessment of model 

performance. 

     Lower RMSE values indicate better model 

performance, with a value of 0 indicating perfect 

predictions (i.e., the model exactly matches the 

observed data). However, RMSE values should 

be interpreted in the context of the specific 

problem and the scale of the target variable. 

 

3.4.2. R-squared (𝑹𝟐) 

     The R-squared (𝑅2) metric, also known as the 

coefficient of determination, is a statistical 

measure used to evaluate the goodness of fit of a 

regression model to the observed data. It 

quantifies the proportion of the variance in the 

dependent variable that is explained by the 

independent variables in the model. 

Mathematically, 𝑅2 is calculated as: 

 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
 (21) 

 

Where: 

- 𝑆𝑆𝑟𝑒𝑠 is the sum of the squares of the residuals 

(the differences between the observed and 

predicted values); and 

- 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 is the total sum of squares, which 

measures the total variance of the dependent 

variable around its mean. 

     𝑅2 can take values between 0 and 1. A value 

of 1 indicates that the regression model perfectly 

fits the data, explaining all the variability in the 

dependent variable. On the other hand, a value of 

0 indicates that the model does not explain any 

of the variability in the dependent variable, and 

its predictions are equivalent to simply using the 

mean of the dependent variable. 

Interpretation of 𝑅2: 

- A high 𝑅2 value (close to 1) indicates that the 

model explains a large proportion of the 

variability in the dependent variable and is 

considered a good fit. 

- A low 𝑅2 value (close to 0) suggests that the 

model does not explain much of the variability 

in the dependent variable and may not be useful 

for prediction. 

     It is important to note that 𝑅2 is a relative 

measure and should be interpreted in the context 

of the specific problem and compared with the 

𝑅2 values of alternative models. Additionally, 

𝑅2 can be influenced by the number of 

independent variables in the model, so caution 

should be exercised when comparing models 

with different numbers of predictors. 

 

3.4.3. Explained variance 

     The explained variance metric quantifies the 

proportion of variance in the dependent variable 

that is explained by the independent variables in 

a regression model. It is often used in 

conjunction with regression analysis. 

Mathematically, the explained variance is 

calculated as: 
 

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

= 1 −
𝑉𝑎𝑟(𝑦 − 𝑦̂)

𝑉𝑎𝑟(𝑦)
 

(22) 

Where: 

- 𝑉𝑎𝑟(𝑦 − 𝑦̂) is the variance of the residuals (the 

differences between the observed and predicted 

values); and 

- 𝑉𝑎𝑟(𝑦) is the variance of the dependent 

variable. 

     The explained variance metric provides a 

measure of how well the independent variables 

in the model account for the variability in the 

dependent variable. Like R², it ranges between 0 

and 1, with higher values indicating that a larger 

proportion of the variance in the dependent 

variable is explained by the model. 

Interpretation of explained variance: 
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- A high explained variance value (close to 1) 

suggests that the independent variables in the 

model effectively explain the variability in the 

dependent variable. 

- A low explained variance value (close to 0) 

indicates that the model does not explain much 

of the variability in the dependent variable, and 

its predictions are not reliable. 

     The explained variance metric is particularly 

useful for assessing the predictive power of 

regression models and determining how well 

they capture the underlying patterns in the data. 

It complements other evaluation metrics such as 

R² and mean squared error (MSE) and helps 

researchers and practitioners gauge the overall 

performance of regression models. 

 

4. Results 

     The Q-Learning algorithm mentioned 

reached the final solution after nine iterations. 

The termination condition for this algorithm is 

the change in the values of 𝐾  for two 

consecutive iterations. In such a way that if the 

norm of the difference between two consecutive 

𝐾 values becomes less than 10−5, the algorithm 

terminates. Considering that the value of 𝐻  is 

obtained from the least squares technique in each 

iteration of the algorithm, the number of 

calculated parameters for 𝑥𝑘  and 𝑢𝑘  should be 

greater than the number of parameters in 𝐻̅  in 

each iteration. After calculating the vector 𝐻̅  

using the least squares technique, it should be 

transformed into the matrix 𝐻 . Given the 

problem, the matrix 𝐻 is obtained as Equation 

23. 

 

     More details about the parameter values in 

the reinforcement learning algorithm are given 

in Table 3. 

Table 3. Specifications of Reinforcement Learning 

(RL). 

Stopping Criteria ‖𝐾𝑗 − 𝐾𝑗−1‖ 

Last Utility 1487 

𝑅 1 

𝑄 [

0 0 0 0
0 0 0 0
0 0 200 −200
0 0 −200 200

] 

 

 

Figure 6. Utility - iteration in the RL algorithm. 

     Figure 6 shows the utility value for each 

episode. Now, based on the obtained values of 

𝐻, the values of 𝐻𝑢𝑥 and 𝐻𝑢𝑢are derived. In this 

specific problem, these values are explained in 

the given equation. In these equations, 𝐻𝑖𝑗 

represents the element in the 𝑖𝑡ℎ  row and 𝑗𝑡ℎ 

column of matrix 𝐻. The method for obtaining 

the control signal for this problem is given in 

Equation 24. 

(24) 

𝐻𝑢𝑥 = [𝐻51 𝐻52 𝐻53 𝐻54] 

𝐻𝑢𝑢 = 𝐻55 

𝑢𝑘 = −(𝐻𝑢𝑢)−1𝐻𝑢𝑥𝑥𝑘 

1 2 3 4 5 6 7 8 9 10

Iteration

200

400

600

800

1000

1200

1400

1600

U
ti

li
ty

(23) 𝐻 =

[
 
 
 
 
 

𝐻̅(1) 0.5𝐻̅(2) 0.5𝐻̅(3) 0.5𝐻̅(4) 0.5𝐻̅(5)

0.5𝐻̅(2) 𝐻̅(6) 0.5𝐻̅(7) 0.5𝐻̅(8) 0.5𝐻̅(9)

0.5𝐻̅(3) 0.5𝐻̅(7) 𝐻̅(10) 0.5𝐻̅(11) 0.5𝐻̅(12)

0.5𝐻̅(4) 0.5𝐻̅(8) 0.5𝐻̅(11) 𝐻̅(13) 0.5𝐻̅(14)

0.5𝐻̅(5) 0.5𝐻̅(9) 0.5𝐻̅(12) 0.5𝐻̅(14) 𝐻̅(15) ]
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To calculate 𝑍̅, the Kronecker product is used, 

and the method for calculating it for this problem 

is given in Equation 25. 

(25) 𝑍̅ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑧1

2

𝑧1𝑧2
𝑧1𝑧3

𝑧1𝑧4
𝑧1𝑧5

𝑧2
2

𝑧2𝑧3

𝑧2𝑧4
𝑧2𝑧5

𝑧3
2

𝑧3𝑧4

𝑧3𝑧5

𝑧4
2

𝑧4𝑧5

𝑧5
2 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

     Based on the initial explanation in this 

section, the algorithm has reached the solution 

after nine iterations. Figure 8 represents the 

speed profile of the train, and it is expected that 

the controller will track this profile. In this 

figure, the speed profile of the train is designed 

for three phases: acceleration, constant speed, 

and braking. 

     The values of the state feedback parameters 

(𝐾 ) and the convergence of the solution are 

shown in Figure 7. The values 𝐾1, 𝐾2, 𝐾3, and 

𝐾4  have converged to their final values in 

iterations 6, 2, 3, and 8, respectively. The initial 

values of 𝐾 are taken as the vector [0.3 1.3 0.75 

0.1]. Furthermore, the discount factor 𝛾 is 0.8. 

The values of 𝑅  and 𝑄  are 1 and 200, 

respectively. However, changing these values 

will have an impact on the final solution. 

     Based on the provided values, the output of 

the controlled speed by the mentioned algorithm 

is shown in Figure 7. As evident, the speed 

control has been performed effectively. Using 

the obtained values, the performance of RL can 

be evaluated, which will be expressed as 

Equation 25: 

 

 

 

 

Figure 7. Training process of state feedback 

controller parameters. 
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Figure 8. Sample of an electric train speed profile. 

 

𝑢𝑘 = 𝐾𝑥𝑘 

(25) 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 

     

 Additionally, the capability of other algorithms 

to find feedback parameters for speed control of 

the train has also been depicted in this figure. As 

can be observed from Figure 10, methods such 

as GA, PSO, and BA exhibit oscillations. These 

oscillations are significantly higher at the 

beginning of the train movement, but overall, 

when transitioning phases, oscillations occur. 

Among the algorithms, GA exhibits the highest 

oscillations, while PSO has the lowest. As seen, 

the RL algorithm controls the train speed without 

oscillation. 

     Furthermore, in Figure 10, the algorithms 

used in this paper were compared with each other 

using the metrics introduced in Section 3. 

However, for better comparison, the metrics 

were presented as percentages. Evidently, the 

RL algorithm outperformed others in all metrics. 

More detailed information is provided in Figure 

9. 
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Figure 9. Comparison of the algorithms utilized based on the introduced metrics in terms of percentage. 
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e 

Figure 10. Speed control of electric trains considering the three-phase set point: acceleration, constant speed, and 

braking. a) PSO, b) GA, c) BA, d) RL, and e) comparison of all mentioned algorithms. 
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5. Conclusion 

For reasons such as fatigue, disregarding speed 

limits, and lack of focus, automatic speed control 

of trains is of great importance. Therefore, 

various methods are suggested for speed control, 

including controllers such as proportional 

integral derivative (PID), fuzzy control, or the 

use of neural networks as speed controllers. Most 

controllers require the dynamic model of the 

system for tuning and design purposes. 

Additionally, they typically operate offline, 

meaning they don't require real-time interaction 

with the system during control. In this research, 

automatic speed control of an electric train was 

performed using reinforcement learning (RL). In 

this method, there is no need for a dynamic 

model of the electric train system. The controller 

learns and performs speed control in an online 

manner, interacting with the training 

environment. As investigated in this research, a 

state feedback controller was used, which was 

trained using reinforcement learning. It 

successfully tracked the two-phase speed profile 

of the electric train. Moreover, other artificial 

intelligence methods were used for comparison 

with the introduced method. Using metrics such 

as root mean squared error (RMSE), R-squared, 

and explained variance, it was shown that the 

mentioned method has superior performance. 

For example, in the RMSE metric, the RL 

algorithm had 46% superior performance 

compared to the Bee algorithm (BA). 

 

List of symbols  

𝐹𝑇𝑟𝑎𝑐  Traction force 

𝐹𝑅 Resistive force 

𝑀 Mass of train 

𝑣 Speed of train 

𝐹𝑟𝑟  Rolling resistive force 

𝐹𝑎𝑟 Aerodynamics drag force. 

𝐹𝑔𝑟 
The gradient force arises from the rail's 

slope or inclination. 

𝑓𝑟 Rolling resistance coefficient 

𝑔 Acceleration due to gravity (9.81 m/s2) 

𝐶𝑤 Drag coefficient 

𝐴 Projected frontal area of the vehicle/train 

𝑛𝑐 Numbers of cars of the train 

𝑟 Radius of the train’s wheel 

𝑇 Torque of the train’s car  

𝑅 Electric resistance 

𝐿 Electric inductance 

𝐵 Motor viscous friction constant 

𝐽 Moment of inertia of the rotor 

𝐾𝑡 Motor torque constant 

𝐾𝑏 Electromotive force constant 

𝑄∗ Optimal Q function 

𝑄𝑘 Q-function 

𝑥𝑘 State k 

𝑢𝑘 Control signal k 

𝑉ℎ Value function 

𝑄 Symmetric matric  

𝑅 Symmetric matric  

𝑃 Solution of the LQT  

𝑟 Reward 

𝐾𝑗 State feedback parameters at 𝑗th generation 

𝐾𝑗−1 State feedback parameters at (𝑗 − 1)th 

generation 

Greek symbols 

𝛼 Inclination angle  

𝜌 Air density  

𝛾 Discount factor 

𝜔𝑤 Angular velocity  
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