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1. Introduction 

In the 1970s, modern limit state design 

principles were introduced after the allowable 

stress design (ASD), which includes ultimate 

limit state (ULS) and serviceability limit state 

(SLS) designs [1]. As a result, designers must 

consider two types of limit states in terms of 

quality and safety when calculating structural 

designs.  

The SLS is a design to certify that a structure 

is not only comfortable but also usable. Since it 

might also involve limits to issues such as 

structural deflection in beams [2] or footing 

displacement owing to soil settlement [3] and 

non-structural issues such as durability [4], cost 

[5], and other aspects related to stakeholders and 

operators. The ULS (ultimate limit state) of a 

structure refers to the maximum design load that 

causes the structure to collapse [6]. Structural 

failure occurs due to the loss of the structure's 

stiffness and strength. However, there are 

several other limit states that existed before the 

ULS and structural failure. Designers make use 

of these other limit states based on the different 
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Public infrastructure is often monitored to assess quality. Alarm thresholds 

indicate when actions are necessary to improve passenger convenience and 

operational safety. Based on safety assessments, urgent rail replacements 

are proposed with a new approach for physical damage threshold 

extraction. Railway tracks are crucial in transportation, and physical 

damage can greatly affect their efficiency. During regular visual 

inspections, inspectors can identify physical damages such as head checks 

or fatigue cracks. However, there are no definite thresholds to determine 

the severity of the damages except for rail profile deformation known as 

wear, which is based on references and standards. Therefore, during the 

survey and inspection, it is essential to establish alarm thresholds based on 

limit states for each case. Defects detected before the ultimate limit state 

can lead to a reduction in quality, which affects the convenience of travel 

but is not harmful to serviceability. Structure quality control methods use 

both qualitative and quantitative approaches to assess these cases. 

However, quantitative assessment reduces the probability of human errors 

and subjective judgments by inspectors when compared to qualitative 

assessment. To begin with, image processing is a quantitative tool used to 

detect defects on rail surfaces. However, the determination of the threshold 

has been neglected, leading to a lack of anticipation of rail physical 

damages' lifetime and cost estimation. Therefore, machine learning tools 

evaluate the output of image processing based on the proposed threshold, 

which has been expressed in this research. In order to ensure safety, 

contingency actions will be taken when needed based on the predetermined 

alarm thresholds. 
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conditions under which the structure may no 

longer be able to perform its intended function 

[7]: 

• The serviceability limit state (SLS) [2, 3, 

4, 5]; 

• The ultimate limit state (ULS) [6, 7]; 

• The fatigue limit state (FLS) [8]; and 

• The accidental limit state (ALS) [9]. 

For a surface to be deemed of good quality, it 

needs to undergo an appearance inspection, 

which is a non-destructive testing (NDT) 

method. This is in accordance with a limit state 

specified in references [23, 24, 25, and 26]. In 

this research, a threshold is proposed that can be 

used to assess the quality of rail surfaces used in 

industrial settings. This threshold is not only 

useful for quality control during production but 

also for inspectors during operation. The limit 

states are determined by taking into account the 

proper capacity or strength and are used during 

the design phase to set a limit for expected 

structural behavior. They are also used to update 

the structural state during operation. Since the 

rail is subjected to cyclic loading, FLS is a 

crucial factor for railway networks. The 

threshold will be determined based on this limit 

state. Meanwhile, the fatigue limit state criterion 

was employed for the design of pre-stressed 

concrete sleepers [29, 30].  

This study presents an automation tool for 

preparing an Industrial Information Integration 

Engineering (IIIE) system. The tool merges 

machine vision and threshold concepts based on 

limit states to increase inspection coverage and 

eliminate errors related to subjective human 

visual inspection. By maximizing inspection 

coverage at each turn, a database is prepared and 

updated with the status of the rail using the IIIE 

framework. This method enhances the precision 

of defect growth recognition and quality changes 

over time in the rail, specifically in detecting the 

propagation of cracks and estimating fractures. 

Recent research based on IIIE has also focused 

on updating the quality status of industrial 

objects [21, 22]. 

 

2. Material and methodology 

2.1. Material 

The purpose of this study is to investigate the 

quality of rail as an industrial component in a 

railway network. For this research, the Tehran 

subway railway network has been selected as a 

case study. It spans a length of 253 kilometers 

and consists of 143 stations, located in both 

urban and suburban areas of Tehran.  

The random checks for this study began in 

October 2020 and lasted for a year. These checks 

were conducted at 13 different locations, chosen 

randomly from eight lines and 26 stations within 

the network. The maximum velocity allowed on 

these lines is 80 km/h. Visual head checks were 

performed on both straight and curved sections 

of the track. The case study used reinforced 

concrete for both the sleeper and the track. 

Additionally, the railway track is situated in 

tunnels, bridges, and open areas. 

2.2. Methodology 

To achieve this goal, machine vision 

techniques that utilize image processing, edge 

detection, and calculation of the damaged area 

have been employed to compare it with the alarm 

threshold. This comparison, integrated within 

the industrial information framework, results in 

a perceptron neuron output of either zero or one 

for each frame. The lighting and camera sync 

together during data gathering; somehow, any 

apparent changes on the rail surface, such as 

cracking and other defects, are detectable by the 

camera. These defects may affect the 

performance of the rail and its quality during the 

operation. In this matter, the setup for capturing 

images is necessary to be compatible with the 

environmental conditions while the train is 

moving. Therefore, the frame rate of the CCD 

camera has to sync with the lighting frequency 

and speed of the train. It is necessary to use a 

softbox in the mainline of the underground 

tunnel for monitoring the rail surface when 

artificial light is reflected by the polished rail 

surface. Therefore, the proposed setup for data 

gathering is proper for detecting any surface 

physical damage on the rail as an industrial 

component. To calculate the area of the damage 

in the observed parts, edge detection has been 

applied, and the damaged area is considered for 

comparison by the maximum hertz ellipsoid 

contact area between the rail and wheel. 

Therefore, in each frame, the damaged area has 

been calculated by its edges and its inside pixels. 
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Meanwhile, the distance changes between the 

CCD and the object during the train movement, 

which affected the scale of the images, were 

neglected. If the railway track is not smooth and 

the train has vertical movement, it is possible to 

scale the rail by comparison with a reference 

image of the rail. 

For better image resolution, a global shot CCD 

or high frame rate rolling shot CCD should be 

used. However, frequency lighting provides an 

economical solution with clear frames. The 

frame captured from the video in an urban area 

is as follows: 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Frame video capture from head check. 

3. Data processing 

The database has been prepared from a rail 

surface status as an object. Machine vision is 

proposed instead of the traditional visual head 

check due to operational limitations and 

obstacles for the visual tests of humans. 

3.1. Inspection database 

Inspectors evaluate the structural behavior of 

railway tracks based on their experience. 

However, machine vision requires setting alarm 

thresholds. It is important to define the 

appropriate threshold size for structural defects, 

such as those found in rails, to ensure sufficient 

safety. It is also necessary to identify the type of 

defect before determining the threshold. The 

International Union of Railways (UIC) has 

developed guidelines for sustainability and 

mobility to improve rail transport worldwide. 

The UIC standard categorizes rail surface 

irregularities, of which Table 1 lists several 

important cases [17]. 

 

3.2. Statistical database results 

According to the head check results of the 

mentioned case, the most frequent defects based 

on the UIC coding system are the surface 

irregularities with code numbers 227, 127, and 

223 (see Figure 2 and Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Observed defect in the case study based on 

UIC-e712 clustering. 

1- Rail 

ends 

2- Zone 

away 

from rail 

ends 

2. Surface of 

rail head 

 

0. Wear 

1. Surface defects 

2. Shelling 

3. Crushing 

4. Local batter 

5. Wheel burns 

7. Cracking and local 

subsidence  

3- 

Defects 

caused 

by 

damage 

to rail 

0. Full 

section 

2. Faulty machining 

3. Permanent 

deformation 

4- 

Welding 

and 

resurfaci

ng 

2. Thermite 

welding 

1. Transverse 

2. Horizontal or 

shelling 

7. 

Resurfacing 

1. Transverse 

2. Horizontal or 

shelling 

Table 1. Rail Irregularities based on UIC coding. 
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      Since fatigue-related cracks and crushing are 

common, machine vision requires specific 

processing thresholds for this database. 

 

4. Updating alarm thresholds 

In the railway track safety system, the stimuli-

based alarm model proposes that rail surfaces are 

monitored, and when some pre-defined 

threshold based on FLS is violated, the alarm 

goes off, requesting the decision-maker to act. In 

other words, the response-based method points 

out that the inspector defines what constitutes an 

alarm based on the incoming information and 

decides whether or not to send the remedial 

action service to the contractor. 

4.1. Fatigue limit state (FLS) 

A great deal of scientific effort has been 

recently conducted on surface irregularities and 

fatigue, as reviewed by Zhuming et al. [27].  

𝜎𝑓= Fatigue limit of the unnotched specimen 

(axial or bending)  

𝜎𝑛𝑓= Fatigue limit of the notched specimen (axial or 

bending) 

𝐾𝑓 =
𝜎𝑓

𝜎𝑛𝑓

 (1) 

Noting Equation 1, notch is a type of crack 

simulation and thickness reduction for 

estimating the fatigue limit. The term 𝐾𝑓 is 

defined as the quotient of the fatigue limit of the 

smooth specimen to the fatigue limit of a 

notched specimen and is also labeled as the 

fatigue strength reduction factor [8]. Peterson 

and Neuber have described the notch sensitivity 

factor based on material features [28]. Neuber 

exploits the average stress along the distance 𝑎𝑁 

ahead of the notch tip as the effective stress for 

fatigue limit prediction. In Equation 2, Kt and 𝑟𝑛 

are the stress concentration factor and notch 

radius, respectively [8].  

 

𝐾𝑓 = 1 +
𝐾𝑡 − 1

1 + √
𝑎𝑁
𝑟𝑛

 

 

(2) 

Peterson states that 𝑎𝑃 is the point of stress 

away from the notch tip as the effective stress, 

based on which the fatigue notch factor 𝐾𝑓 can 

be expressed as in Equation 3 [8]. 

𝐾𝑓 = 1 +
𝐾𝑡 − 1

1 +
𝑎𝑃
𝑟𝑛

 (3) 

According to Figure 1, the most common rail 

irregularity in this research case study is rail 

contact fatigue (RCF) due to high frequent loads 

in the subway, according to ongoing 

observation. RCF on a rail will occur if the 

stresses exceed a threshold in the contact patch. 

Surface cracking forms as flakes due to 

accumulated plastic strain and the pressure and 

creep forces over time. Therefore, the failure 

mechanism due to wheel rotation on the rail 

surface is RCF, intensified by surface fatigue 

cracks on the rail. A model for the prediction of 

rolling contact fatigue (RCF) has been 

developed by Ekberg et al. [11, 12], and an index 

called 𝐹𝐼𝑠𝑢𝑟𝑓 has been developed for this 

purpose [10, 18], Equations 4 and 5. 

𝐹𝐼𝑠𝑢𝑟𝑓 =
|𝐹𝑡|

𝑁
−

2𝜋𝑎𝑏𝑘

3𝑁

=  𝜇 − 
2𝜋𝑎𝑏𝑘

3𝑁
 

(4) 

 

𝜇 =
|𝐹𝑡|

𝑁
=

√𝐹𝑥
2 + 𝐹𝑦

2

𝑁
 

(5) 

In these equations, μ is the utilized friction 

coefficient, 𝐹𝑥 and 𝐹𝑦 are lateral loads in the rail 

and wheel axle directions. Moreover, N is the 

normal contact force, 𝐹𝑡 is the lateral contact 

force, a and b are half the Hertz contact ellipse 

diameter, and k is the yield limit in pure shear 

(torsion). Accordingly, RCF occurs if the value 

for this index is greater than zero (𝐹𝐼𝑆𝑢𝑟𝑓 >0). 

Based on recent models, the area of cracks and 

notches is important for failure due to fatigue and 

RCF when a and b have been changed and have 

effects on the Hertz contact ellipse. Therefore, 

the proposed method in this research focuses on 

damaged area estimation by mechanized visual 

inspection and machine learning for clustering 

defects based on alarm thresholds and crack area 

estimation. 
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4.2. Hertz contact ellipse 

The zone of interaction of two curved surfaces 

of the rail and wheel in contact is ideally zero; 

therefore, this will cause infinite stress and 

instant failure of the rail. However, based on 

surface stiffness changes due to railhead 

irregularities and during the application of load, 

a real area of contact is formed. Thus, the form 

of the contact area depends on the materials of 

the rail and the load. The German physicist 

Heinrich Hertz (1881) first studied this stress, 

and, in his honor, the name of stress in this 

contact area was given as Hertzian stress [16]. 

The Hertzian stress and deformation in this 

contact area have been plotted in a recent study 

and finite element model in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Deformation plot of Big Rail Wheel 

(cross-section view) [15]. 

 

Based on this model, the maximum 

deformation will occur on the railhead and gauge 

corner, and RCF also appears in the same zone 

as the railhead. This defect is also more common 

in the inner rail of the curves. 

4.3. Machine learning and damage detection 

method 

Recently, neural networks have been exploited 

to solve problems such as detection and 

classification by activation functions. Time 

series data and state comparisons based on the 

limit state in each turn have a reward as an index. 

Meanwhile, if the volume of irregularities is 

greater than the threshold, the alarms will be 

active. 

 

Figure 4. Agent environment interaction [13]. 

 

    This paper suggests a relative computational 

algorithm based on neural networks for the 

establishment of alarm thresholds for railway 

engineering structures to indicate when 

contingency actions are needed to improve 

safety. On this occasion, the assessment of the 

structure has been done by a neural network 

based on perceptron neurons. The result is that 

the critical points in railway networks in terms of 

safety are detectable by a camera as an agent. In 

this matter, estimating the damaged area on the 

rail surface prepares the environment, and the 

perceptron neuron will check the volume of the 

damaged area. Based on Figure 6, if the damaged 

area is higher than the fatigue threshold, the 

alarm goes off. If the damaged area is lower than 

the expected threshold, the reward will be 0, and 

for the higher amount, the reward will be 1. 

 

5. Results 

5.1. Threshold estimation 

In this case, based on the flowchart in Figure 

5 (Result 2), the threshold estimation has been 

calculated for the case study. Therefore, the rail 

specifications for FLS and FI calculations are as 

follows: 

According to Equation 6 [19], the yield stress 

in shear (K) has been estimated at 346.987 MPa. 

𝐾 =
𝝈𝒚

√3
 (6) 

In the Tehran subway, the train axle load is 

different for urban and suburban areas. In this 

case study, the urban area has been considered 

for this research. Meanwhile, the axle load for 

the train (AC Series 100) is 9.5 tons. The friction 

coefficient for both steel surfaces will be 

between 0.1 and 0.2 for uneven surfaces. 

Additionally, other parameters have been 

suggested as follows: 
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μ = 0.2 

N = 9.5 t = 9500 kg 

K = 346.987 MPa = 3538.288 kg/cm2 

 

FI>0=> μ −  
2πabk

3N
 > 0 

=> 
μ∗3N

2k
>  πab 

(7) 

𝛑𝐚𝐛 is the ellipsoid area between the wheel 

and rail contact zones. Based on Equation 7, it is 

necessary to limit this area to less than 0.0805 

𝒎𝒎𝟐 if RCF is undesirable on the rail surface. 

The cracks and damaged areas have to be lower 

than this contact area. In other words, the 

maximum damaged area has to be lower than this 

threshold.   

  

5.2. Damaged area estimation 

       The damaged area has been estimated in 

videos and shown in Figure 6. In Figure 6, the 

damaged area has been shown.  
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Figure 5. Damage analysis process. 

Table 2. Test result for finding proof offset (𝜎𝑦). 

No 
Diameter 

D (𝑚𝑚2) 

Initial 

cross-

section area 

𝑆0(𝑚𝑚2) 

Proof offset 

0.2% 𝑅𝑡 

Mpa 

Ultimate 

strength 

𝑅𝑡 

Mpa 

Relative elongation 

%A 

𝐿𝑒 = 5.65√𝑆𝑠 

Cross-

section area 

reduction 

%Z 

1 9.96 77.91 598 1011 11.5 22 

2 9.91 77.13 604 997 12.5 23 
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Figure 6. Threshold and damaged area comparison. 

 

6. Conclusion 

The results show that the Hertz contact 

ellipse’s area between the rail and wheel is (πab) 

0.805𝐶𝑚𝟐. Based on BS EN 13674-1, the rail 

head width is 70 mm, and the damaged area will 

reduce the width of the wheel and rail contact 

area. To detect surface defects on the rail and 

measure the rate of irregularity growth over 

time, it is necessary to establish thresholds for 

machine vision instead of relying on visual tests. 

Therefore, it is necessary to ensure that the 

damaged area in each frame of the video is lower 

than the threshold.  With this neural network after 

edge detection and damaged area estimation, the 

volume of the damaged area will be compared 

with the threshold, and for a higher quantity, the 

RCF is probable and the alarm goes off.  

Data analysis for damage detection after 

automation is comparable over time based on 

indexes. However, traditional visual rail head 

checks lack quantitativeness. The quality of the 

material source can be determined by the rate of 

damage growth. This information can also aid in 

the management of maintenance and improve 

the efficiency of maintenance activities 
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