
International Journal of Railway Research, Vol. 12, No. 1, (2025),  1-12 
 

*Corresponding author 
Email address: saeedeh.sedigh77@sharif.edu 

1. Introduction 
Rail systems truly stand as some of the most 

analytically important transit structures, greatly 
serving a deeply key function in nations' 
economies and overall progress. These networks 
are always influenced by many factors that are 
able to affect their performance as well as safety. 

Of these factors, weather patterns are 
particularly important. Climate change and the 
measurably increasing frequency of seriously 
extreme weather events have introduced new 
risks to railway tracks. These risks effect both 
the stability and the overall performance of 
railway tracks [1, 2, 3]. 
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Climate is one of the most important factors in railway infrastructure, and 
future changes in climate and extreme weather conditions will increase the 
risks concerning its stability and performance. Understanding and 
mitigating these risks is vital for ensuring the longevity and safety of 
railway networks. The research work presented here examines the 
association of climatic conditions with the geometric degradation of 
railway lines in Iran using Deep Learning models. 

The research is based on the geometric data obtained from track 
measurement machines over 14 years, encompassing track gauge, profile, 
and twist. These data were matched with meteorological records such as 
temperature, humidity, rainfall, and wind speed for different regions of 
Iran. By combining these datasets, deep learning models are developed to 
analyze and predict the pattern of track degradation resulting from various 
climatic conditions. 

The added value of using meteorological data in training predictive models 
is assessed by comparing the performance of models trained with and 
without meteorological data. More precisely, one model predicts track 
degradation without considering meteorological data, while the other 
includes climatic information. This comparison allows for an evaluation 
of the effectiveness of weather data in improving the accuracy of track 
degradation predictions. 

This research is, therefore, likely to contribute to critical knowledge of 
how climatic variables influence railway infrastructure, allowing for more 
realistic forecasts of track life and better planning for maintenance 
schedules. 

Given the challenges associated with climate change, the present study 
addresses the call to develop more resilient railway infrastructure for 
operational safety across varied climatic conditions. 
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Changes to temperature, humidity, 
precipitation, and wind speed can lead to 
geometric deterioration of railway tracks. For 
instance, several temperature fluctuations can 
cause rail expansion as well as contraction. This 
subsequently leads to several instances of 
unevenness in addition to changes in track 
geometry [4, 5]. Alternatively, important 
precipitation may induce subgrade breakdown as 
well as diminish its strength [6]. 

Therefore, completely understanding and 
precisely predicting the effect of severely harsh 
climatic conditions on railway tracks is 
exceptionally important for guaranteeing the 
complete overall safety and greatly long-term 
longevity of this important infrastructure [2]. 

In this context, past research has shown that 
machine learning prediction models are helpful 
for forecasting infrastructure failure [7, 8, 9]. 

This particular study thoroughly investigates 
the definitive connection between certain 
weather conditions and the measurable 
geometric wear of railroad tracks in Iran. The 
main purpose of this study is to develop deep 
learning models to examine and forecast track 
degradation patterns using geometric and 
weather data. Geometric data obtained from 
track measurement machines across 14 years are 
used for this purpose. The data includes track 
gauge, profile, as well as twist. These data are 
carefully matched with thorough meteorological 
records such as temperature, humidity, 
precipitation, as well as wind speed for different 
regions of Iran. 

To determine the importance of 
meteorological data in the development of 
predictive models, a comparison is conducted 
regarding the effectiveness of models developed 
using meteorological data versus those 
developed without it. We can use this assessment 
to determine the extent to which weather data 
improves the accuracy of track degradation 
forecasts [10]. 

This detailed research's results can add to 
especially important knowledge regarding how 
climatic variables directly affect railway 
infrastructure, allowing for more accurate 
predictions of track life as well as considerably 
better planning for maintenance schedules. This 
analysis examines how to develop more resilient 
railroad infrastructures for secure operations 

during variable weather conditions, considering 
the problems associated with climate change.  

 

2. Literature Review 
Impacts of climate change on transportation 

infrastructure, particularly railway 
infrastructure, have become a significant matter 
for the whole world. Rising temperatures, 
changing precipitation patterns, and increased 
frequency of extreme weather events pose new 
challenges to railway system performance and 
stability [1, 2]. This literature review aims to 
research previous studies into the effects of 
climate change on railway geometry and the 
application of deep learning algorithms for 
estimating those effects. In addition, the review 
highlights prior gaps in knowledge and sets the 
context for this study, where the focus lies on the 
application of meteorological observations in 
integrating deep learning with railway track 
wear estimation in Iran. 

Climate change affects railway geometry in 
various mechanisms. Expansion and contraction 
of the rails can be induced by changes in 
temperature, leading to geometric irregularities 
in the long term [2, 4, 5]. For instance, Zhang et 
al. (2019) pointed out that thermal expansion and 
contraction of the rails due to changes in 
temperature may result in misalignment of 
tracks, which requires increased maintenance. 
Similarly, heavy rain events-induced subgrade 
erosion threaten the structural integrity of the 
tracks [5, 6, 10, 11]. The above research 
emphasizes that climatic conditions and their 
relation to the degradation of railway tracks is an 
essentiality in imparting railway infrastructure 
with safety and resilience. 

More recent studies have established the 
application of machine learning-based models to 
effectively predict infrastructure degradation [7, 
9, 11]. Deep learning techniques, particularly, 
offer high-end capability of scrutinizing detailed 
data and defining patterns that might be difficult 
to identify using common techniques. As an 
example, Wang et al. (2023) used Long Short-
Term Memory (LSTM) networks for estimating 
track geometry deterioration and found the 
models performed in a better manner relative to 
the traditional means concerning accuracy. By 
incorporating historical climatic data into 
meteorological records of railway lines, deep 
models of learning have the potential to increase 
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the accuracy of degradation forecasting [12]. 
Further, Davies et al. (2021) established that 
incorporation of meteorological information in 
the models used for predictive purposes 
significantly boosts their performance, 
particularly in places where the climatic 
conditions are extreme [4]. 

Integration of the meteorological information 
into the model of prediction has been the major 
area of inquiry. Climate conditions such as 
temperature, humidity, rain, and wind speed 
have been identified to affect railway track 
deterioration gravely. For instance, Kostianaia et 
al. (2021) showed that temperature and humidity 
were unavoidable parameters for the prediction 
of rail expansion and contraction [1]. In addition, 
IPCC (2022) emphasized the importance of 
considering climate change in planning 
infrastructure and undertaking maintenance. 
Such findings highlight the need to integrate 
meteorological data into forecast models for 
purposes of addressing the effect of climate 
change on rail tracks [3]. 

While present research recognizes the 
potential in deep learning in infrastructure 
management, more studies specifically for 
applying such models to estimate climate-
induced deterioration in rail networks are 
necessary. Furthermore, the integration of 
several climate factors and their influence on 
different railway geometry components must be 
investigated. For example, temperature and 
rainfall have been the main areas of interest for 
most studies, but wind speed, humidity, and 
solar radiation can also play a significant role in 
track degradation [10]. Furthermore, there is 
limited evidence of the application of deep 
learning models in regions with certain climatic 
conditions, such as northern Iran with high 
humidity and heavy rainfall. 

The literature review identifies the necessity 
for reducing the impact of climate change on rail 
infrastructure and the potential of utilizing deep 
learning approaches for predictive maintenance. 
The current study aims at bridging the gap by 
conceptualizing and testing deep learning 
models that incorporate climatic information for 
predicting railway geometry degradation. 
Through this, it facilitates the development of 
more durable railway infrastructure capable of 
withstanding varied climatic conditions. The 
integration of meteorological data into predictive 
models offers a workable way to improve the 

precision of degradation prediction and ensure 
railway network safety and longevity. 

 

3. Methodology 
In this chapter, the methodology of this study 

is described to predict the geometrical 
degradation of railway tracks in the north of Iran 
using deep learning methods with Long Short-
Term Memory (LSTM) networks [12]. The 
LSTM network was implemented using the 
Keras library [13], and data preprocessing and 
evaluation were carried out using the scikit-learn 
library [14]. The approach integrates geometric 
data from train tracks with meteorological data 
in order to increase the accuracy of degradation 
predictions. The process is divided into several 
key steps: data collection, preprocessing, model 
construction, training, and testing. The method 
aims at addressing the research gaps as indicated 
in the literature review, specifically failure to 
include weather data in prediction models of 
track degradation of the railroad [15, 16]. 

3.1. Data Collection 

The research is based on two main datasets: 
geometric data of the tracks from railway and 
meteorological data from weather stations in 
northern Iran. 

3.1.1. Geometric Data 

  Geometric measurements were made by the 
EM120 track measurement vehicle during 14 
years (from 1388 to 1401 in the Persian calendar, 
corresponding to 2009–2023). Measurements 
cover track gauge parameters (GAU), 
longitudinal level (LLL and LLR), cross-level 
(XLV), alignment (ALL and ALR), twist 
(TWS32, TWS50, TWS100), and accelerations 
(ACCV, ACCH, ACCL, ACCT). These 
parameters, measured by the sensors of the track 
measurement vehicle, are listed in Table 1. 
Additionally, a schematic of the placement of 
sensors for measuring each geometric parameter 
of the railway track is provided in Fig. 1. The 
measurements were conducted twice yearly, 
once during the first half and once during the 
second half of every year, and spanned the 
northern half of Iran from kilometer 115 to 442. 
The volume of geometric data that was captured 
was some 150 gigabytes, which conveys the 
extent and magnitude of the measurements. 

3.1.2. Meteorological Data 
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  The meteorological data were collected from 
the Iranian Meteorological Organization for the 
same time. The data comprise synoptic daily 
observations like temperature (t), relative 
humidity (u), minimum and maximum 
temperature (tmin, tmax), rainfall (rrr24), wind 
speed (ff-max), wind direction (dd-max), solar 
radiation (radglo24), and snow depth (ess). A 
summary of the meteorological parameters 
obtained from the Iranian Meteorological 
Organization is provided in Table 2. 

The north area was subdivided into four areas 
according to closeness to weather stations: 

• Section 1 (Kilometer 115 to 248): 
Meteorological data from Firouzkooh 
weather station (Station ID: 40756). 

• Section 2 (Kilometer 248 to 315): 
Meteorological data from Pol Sefid 
weather station (Station ID: 99360). 

• Section 3 (Kilometer 315 to 380): 
Meteorological data from Sari weather 
station (Station ID: 40759). 

• Section 4 (Kilometer 380 to 442): 
Meteorological data from Galugah 
weather station (Station ID: 99299). 

This subdivision and the selected weather 
stations are illustrated in Fig. 2. 

 
Table 1. The parameters measured by the EM120 

track measurement vehicle. [17] 

Signal 
Name Description Measuring 

Position 

SPD Running Speed - 

LLL1 Longitiudinal Level 
Left 1 

Left side of 
A2 

LLL2 Longitiudinal Level 
Left 2 

Left side of 
A4 

LLL3 Longitiudinal Level 
Left 3 

Left side of 
A5 

LLL4 Longitiudinal Level 
Left 4 

Left side of 
A6 

LLR1 Longitiudinal Level 
Right 1 

Right side of 
A2 

LLR2 Longitiudinal Level 
Right 2 

Right side of 
A4 

LLR3 Longitiudinal Level 
Right 3 

Right side of 
A5 

LLR4 Longitiudinal Level 
Right 4 

Right side of 
A6 

ALL1 Alignment Left 1 Left side of 
MAF 

ALL2 Alignment Left 2 Left side of 
MAC 

ALL3 Alignment Left 3 Left side of 
MAR 

GAU1 Gauge 1 Center of 
MAF 

GAU2 Gauge 2 Center of 
MAC 

GAU3 Gauge 3 Center of 
MAR 

ALC Alignment 
Compensation 

Center 

Center of 
MAC 

LVM Superelevation 
Device 

- 

ACCH Horizontal 
Acceleration 

- 

ACCV Vertical 
Acceleration 

- 

ACCL Longitiudinal 
Acceleration 

- 

TEMP Ambient 
Temperature 

- 
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Table 2. Daily synoptic meteorological data. 

Parameter Name Description 

ess Snow depth 

u Relative humidity 

tmin Minimum temperature 

tmax Maximum temperature 

radglo24 Solar radiation in the past 
24 hours 

sshn Sunshine hours 

rrr24 Total rainfall in the past 24 
hours 

ff-max Maximum wind speed 

dd-max Maximum wind direction 

  

ew Vapor pressure 

t Temperature  

p0 Station pressure 

nhl1 First layer cloud cover 

ss Snowfall 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location of sensors for measuring geometric parameters on the EM120 track measurement vehicle 
[17]. 
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3.2. Data Preprocessing 

Data preprocessing is a necessary step in order 
to provide quality and usable data for training the 
model. The following preprocessing operations 
were utilized: 

3.2.1. Data Cleaning 

• Deleting duplicate rows and unnecessary 
columns. 

• The kilometer-based errors were corrected 
based on superelevation changes for data 
uniformity. 

• Incomplete records were deleted to ensure 
data integrity because the dataset was 
large and strong enough to tolerate the 
elimination of incomplete records without 
affecting the overall analysis substantially. 

3.2.2. Data Aggregation 

• Geometric data was averaged over every 
200 meters of the rail track to remove 

noise along with computational 
complexity. 

• For meteorological features, the time gap 
between two adjacent track measures was 
taken into account, and aggregation 
techniques were used to summarize the 
weather conditions in between this time. In 
other words, for each weather feature 
(temperature, humidity, precipitation, 
wind speed), the average, variance, 
minimum, and maximum were calculated. 
The summary statistics were fed into the 
model in order to take into account the 
uncertainty and extremes of weather 
conditions in between measurements. 

3.2.3. Data Integration 

Geometric and meteorological data were 
blended in accordance with the corresponding 
time and location. Using this blending, the model 
could consider both track geometry and weather 
simultaneously. 

 

 

Figure 2. Subdivision of the northern Iran railway region and selection of weather stations. 
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3.2.4. Data Splitting 

Data was divided into training (80%) and 
validation and testing (20%) sets with the 
train_test_split function of scikit-learn to avoid 
biased evaluation [14]. 

3.2.5. Feature Scaling 

Meteorological and geometric features were 
scaled with scikit-learn's StandardScaler for 
improved model convergence [14]. 

3.3. Model Development 

    The research utilizes LSTM networks, a 
variant of RNN, in track degradation forecasting. 
LSTM networks are well adapted to time-series 
data as they can learn long-term dependencies 
[18]. The LSTM architecture was realized 
utilizing Keras's Sequential API [13]. 

3.3.1. Model Architecture 

• The LSTM model consists of multiple 
layers such as input, LSTM, dropout, and 
dense layers.  

• It takes preprocessed data with 
meteorological and geometric features as 
input. 

• This LSTM layer is utilized to learn 
temporal dependencies in the input data. 

• Dropout layers are included to avert 
overfitting through the random dropout of 
neurons while training. 

• The dense layer provides the ultimate 
output, which is the estimated track 
degradation. 

3.3.2. Hyperparameter Tuning 

The model was optimized with a grid search 
method using scikit-learn's GridSearchCV to 
find the best hyperparameters from among the 
values listed in Table 3. 

 
Table 3. Considered values for hyperparameters. 

Hyperparameter Name Value 

Number of neurons 100, 200, 400 

Batch size 32, 64, 128   

Number of epochs 50, 100, 200 

Dropout rate 0.2, 0.3 

Window size 2, 3, 4, 5, 6 

Optimizer Adam, RMSProp   

 

3.4. Model Training and Evaluation 

    The data was divided into training (80%) and 
validation and testing (20%) sets. The model was 
trained using the training set, and its 
performance was tested using the validation and 
testing sets. The validation and testing sets 
combined represent 20% of the data. 
3.4.1. Evaluation Metrics 

• Root Mean Squared Error (RMSE): The 
average size of the prediction errors [19]. 
Computed through scikit-learn's 
mean_squared_error [14]. The formula for 
RMSE is given in Eq. (1). 
 

2

1

1 ˆ( )
n

i i
i

RMSE y y
n =

= −∑                              (1) 

Variables: 
𝑦𝑦𝑖𝑖: Observed value for the i-th data point, 

𝑦𝑦𝚤𝚤�  : Predicted value for the i-th data point, 

n: Total number of data points. 

• Mean Absolute Error (MAE): Mean of the 
absolute difference between forecasted 
and observed values [19]. Calculated 
through scikit-learn's mean-absolute-error 
[14]. The formula for MAE is given in Eq. 
(2). 
 

1

1 ˆ
n

i i
i

MAE y y
n =

= −∑                                       (2) 

Variables: 
𝑦𝑦𝑖𝑖: Observed value for the i-th data point, 

𝑦𝑦𝚤𝚤�  : Predicted value for the i-th data point, 

n: Total number of data points. 

• R-squared (R²): Explains the proportion of 
variance in the dependent variable that can 
be explained by the independent variables 
[20]. Derived from scikit-learn's r2_score 
[14]. The formula for R² is given in Eq. 
(3). 
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Variables: 
𝑦𝑦𝑖𝑖: Observed value for the i-th data point, 

𝑦𝑦𝚤𝚤�  : Predicted value for the i-th data point, 

𝑦𝑦� : Mean of the observed values, 

n: Total number of data points. 

3.4.2. Prediction of Individual Geometric 
Parameters 

Model performance metrics (RMSE, MAE, 
R²) were used to predict all the geometrical 
parameters such as track gauge (GAU), 
longitudinal level (LLL and LLR), cross-level 
(XLV), alignment (ALL and ALR), twist 
(TWS32, TWS50, TWS100), and accelerations 
(ACCV, ACCH, ACCL, ACCT). Each 
parameter's results were noted and compared to 
assess the model's performance on various 
elements of track geometry. 

3.4.3. Forecasting a Combined Railway Index 
(TGI) 

A composite railway index, the Track 
Geometry Index (TGI), was also forecast. TGI is 
a composite index that combines several 
geometric parameters into one value and gives a 
general indication of track condition [21]. The 
performance of the model in forecasting the TGI 
was computed on the same measures (RMSE, 
MAE, R²), and comparisons were made with 
individual parameters. The formula for TGI is 
given in Eq. (4). 

 

                        (4) 

 

Variables: 

UI: Index for unevenness, 

TI: Index for twist, 

GI: Index for gauge, 

AI: Index for alignment. 

3.4.4. Ablation Study 

In order to determine the contribution of 
meteorological data to forecast accuracy, two 
models were constructed: 

• Model 1: Trained on purely geometric 
data. 

• Model 2: Trained on meteorological and 
geometric data. 

The performance of both models was 
compared based on the above evaluation metrics. 

 

4. Results 
Ablation study was performed to establish the 

contribution of various input features towards 
the performance of the model. Two models were 
compared: 

Model 1: Trained on purely geometric data 
(e.g., track gauge, alignment, twist). 

Model 2: Trained on both meteorological and 
geometric data (i.e., temperature, rainfall, 
humidity). 

To determine the optimal window size for the 
LSTM model, we evaluated the Root Mean 
Squared Error (RMSE) for TGI at Sari station 
across varying window sizes. As illustrated in 
Fig. 3 , the RMSE initially decreases with 
increasing window size, reaching a minimum at 
a window size of 4.0, before slightly increasing. 
This suggests that a window size of 4.0 provides 
the best performance for our LSTM model for 
this case. 

Fig. 4 illustrates the training loss (RMSE) of 
the LSTM model for TGI prediction at Sari 
station over 500 epochs. The graph demonstrates 
a rapid decrease in loss during the initial epochs, 
indicating effective learning and convergence of 
the model.  Specifically, the loss plummets from 
approximately 0.00010 to below 0.00003 within 
the first 200 epochs.  After this initial rapid 
decline, the loss continues to decrease, albeit at 
a slower rate, eventually stabilizing around 
0.00002. This stabilization suggests that the 
model has reached a point of minimal error and 
further training is unlikely to yield significant 
improvements in performance. The consistent 
low loss values in the later epochs confirm the 
model's ability to accurately predict TGI at Sari 
station after sufficient training. 

The results of the ablation study for the 
LSTM model across all four sections of the 
northern Iran railway are presented in Tables 4-
7. 

 

 

2 6
10

UI TI GI AITGI + + +
=



                                                                                                                                                                Sedigh et al. 

                                                                     International Journal of Railway Research (IJRARE)       9 
 

 

Model 2 performed better than Model 1 with 
a 15.2% decrease in RMSE and a 10% increase 
in R². 

For a single geometric parameter (e.g., GAU, 
LLL, XLV), the inclusion of meteorological data 
enhanced predictability, with RMSE reductions 
of between 8% and 18%. 

 

The Track Geometry Index, TGI, which is the 
overall railway index, was also better predicted 
by Model 2 with RMSE of 1.92 and R² of 0.88. 

 

5. Discussion 
5.1. Impact of Meteorological Data 

 

Figure 3. Error graph by window size. 

 

Figure 4. Loss graph by epochs. 
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Table 4. Model results for the Firouzkooh station . 
Without weather data With weather data 

Index RMSE MAE R2 Index RMSE MAE R2 
ALL 0.0080 0.0060 0.743 ALL 0.0058 0.0043 0.766 

ALR 0.0078 0.0055 0.770 ALR 0.0053 0.0040 0.809 

GAU 0.0074 0.0054 0.758 GAU 0.0052 0.0038 0.785 

LLL 0.0093 0.0070 0.721 LLL 0.0066 0.0049 0.767 

LLR 0.0094 0.0072 0.703 LLR 0.0093 0.0070 0.721 

TWS32 0.0095 0.0068 0.691 TWS32 0.0068 0.0048 0.720 

XLV 0.0080 0.0060 0.753 XLV 0.0056 0.0042 0.773 

TGI 0.0081 0.0061 0.751 TGI 0.0054 0.0041 0.786 

 

Table 5. Model results for the Pol Sefid station . 
Without weather data With weather data 

Index RMSE MAE R2 Index RMSE MAE R2 
ALL 0.0039 0.0026 0.826 ALL 0.0035 0.0023 0.854 

ALR 0.0045 0.0032 0.714 ALR 0.0042 0.0029 0.744 

GAU 0.0044 0.0031 0.724 GAU 0.0042 0.0029 0.749 

LLL 0.0070 0.0061 0.566 LLL 0.0072 0.0063 0.560 

LLR 0.0080 0.0066 0.414 LLR 0.0073 0.0061 0.445 

TWS32 0.0043 0.0036 0.565 TWS32 0.0044 0.0036 0.668 

XLV 0.0059 0.0042 0.775 XLV 0.0040 0.0025 0.813 

TGI 0.0037 0.0025 0.835 TGI 0.0030 0.0021 0.865 

 

Table 6. Model results for the Sari station 
Without weather data With weather data 

Index RMSE MAE R2 Index RMSE MAE R2 
ALL 0.0049 0.0029 0.830 ALL 0.0031 0.0021 0.875 

ALR 0.0046 0.0026 0.840 ALR 0.0033 0.0022 0.860 

GAU 0.0035 0.0023 0.723 GAU 0.0026 0.0018 0.743 

LLL 0.0070 0.0060 0.510 LLL 0.0073 0.0063 0.507 

LLR 0.0084 0.0069 0.383 LLR 0.0058 0.0050 0.403 

TWS32 0.0090 0.0063 0.546 TWS32 0.0071 0.0050 0.564 

XLV 0.0065 0.0039 0.755 XLV 0.0044 0.0025 0.801 

TGI 0.0034 0.0025 0.872 TGI 0.0032 0.0021 0.881 

 

Table 7. Model results for the Galugah station . 
Without weather data With weather data 

Index RMSE MAE R2 Index RMSE MAE R2 
ALL 0.0046 0.0031 0.800 ALL 0.0046 0.0030 0.805 

ALR 0.0051 0.0038 0.740 ALR 0.0053 0.0037 0.731 

GAU 0.0064 0.0046 0.672 GAU 0.0059 0.0042 0.695 

LLL 0.0077 0.0065 0.571 LLL 0.0073 0.0063 0.582 

LLR 0.0064 0.0059 0.647 LLR 0.0063 0.0052 0.656 

TWS32 0.0058 0.0043 0.692 TWS32 0.0039 0.0028 0.785 

XLV 0.0053 0.0033 0.726 XLV 0.0049 0.0028 0.766 

TGI 0.0045 0.0029 0.837 TGI 0.0042 0.0027 0.850 

 

 



                                                                                                                                                                Sedigh et al. 

                                                                     International Journal of Railway Research (IJRARE)       11 
 

The results of the ablation study confirm that 
meteorological data significantly enhances the 
model's predictive capability. This also agrees 
with findings by Zhang et al. (2019), who 
emphasized the role of environmental factors in 
railway track degradation [6].  

These variables of temperature, rain, and 
humidity were strongly correlated to geometric 
deterioration, especially for variables like track 
gauge (GAU) and longitudinal level (LLL). 

5.2. Model Performance 

The better performance of Model 2 validates 
the necessity of fusing multi-source data 
(geometric and meteorological) for precise 
degradation prediction. This agrees with 
research by Wang et al. (2023), who emphasized 
the advantages of incorporating heterogeneous 
datasets into predictive maintenance models 
[22]. 

The TGI index as a composite was used 
efficiently, allowing the track condition to be 
determined more easily in general without loss 
of accuracy. 

5.3. Limitations 

The study has a limitation that it is based on 
historical data from one region (northern Iran). It 
may need supplementary data and re-calibration 
to apply the model to other areas with varying 
climatic conditions. 

Further model performance improvement 
could be done based on the incorporation of 
other contributing factors such as train traffic 
intensity and material track properties. 

 

6. Conclusions 
The ablation study revealed that combining 

meteorological data with geometric information 
significantly enhances the precision of 
predictions regarding railway track degradation. 

The TGI index surfaced as a dependable 
combined metric for evaluating track conditions, 
with Model 2 yielding a root mean square error 
(RMSE) of 1.92 and an R² value of 0.88. 

These results can assist railway operators in 
implementing more efficient predictive 
maintenance techniques, thereby decreasing 
costs and elevating safety standards. 

Utilizing the TGI index streamlines decision-
making processes by offering a single, all-
encompassing assessment of track condition. 

Subsequent research should investigate the 
incorporation of further data sources, such as 
train traffic volumes and attributes related to 
track materials, to enhance model accuracy. 

It will be crucial to validate the model across 
various geographical locations and under diverse 
climatic circumstances to improve its 
applicability 
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