Volume 10, Issue 2 (12-2023)                   IJRARE 2023, 10(2): 82-93 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

darvishpour Y, soltaninejad M, Mousavi Gazafroudi S M. Estimating the battery life of an electric train using the ANFIS model. IJRARE 2023; 10 (2) :82-93
URL: http://ijrare.iust.ac.ir/article-1-341-en.html
School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
Abstract:   (608 Views)
Batteries as a power source for electric trains have been considered due to a number of advantages, including flexibility, reduced air and noise pollution, and lower operating costs.  Estimating the lifespan of batteries is one of the most basic challenges to evaluating their economic efficiency.  This article presents a helpful life forecast of lithium-ion batteries in electric trains, utilizing the Adaptive Neuro-Fuzzy Inference System (ANFIS) to determine replacement time and economic efficiency. To assess battery performance in electric trains, the train dynamic model is simulated for one motion cycle. In this simulation, the speed profile of the train is considered to be constant and repeated, and then, by applying the current consumption of the train to the battery, the battery's life is predicted for a limited length of time using machine learning (ML) models. In the test stage, comparing the ANFIS model to other ML methods indicates that it outperforms all error indicators and has a higher accuracy for estimating battery life. 
Full-Text [PDF 1052 kb]   (191 Downloads)    
Type of Study: Research | Subject: Electrical railway

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | International Journal of Railway Research

Designed & Developed by : Yektaweb